2013初三几何复习要点题.doc_第1页
2013初三几何复习要点题.doc_第2页
2013初三几何复习要点题.doc_第3页
2013初三几何复习要点题.doc_第4页
2013初三几何复习要点题.doc_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2012重庆名校中考几何训练试题一、计算类第4题图GABCDE(3题图)FM(1题图)E2.如图,ABCD,直线EF分别交AB、CD于E、F,EG平分BEF,若170,则2_度3.如图,直角梯形ABCD中,ADBC,ABBC,AD=2,BC=3,将腰CD以D为中心顺时针旋转至ED,过点E作EF直线DA于E,过点D作DMBC于M,连结AE、CE,则ADE的面积是_ 4. 如图,一张宽3cm,长为4cm的矩形纸片ABCD,先沿对角线BD对折,点C落在C的位置,BC交AD于G,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M.则ME的长为( )cm. A.2 B. C. D.ABDECFG5如图,在ABCD中,AB=5,BC=8,ABC,BCD的角平分线分别交AD于E和F,BE与CF交于点G,则EFG与BCG面积之比是( )5题图A5:8 B25:64 C1:4 D1:16二、与函数结合6如图,M是边长为4的正方形AD边的中点,动点P自A点起,由ABCD匀速运动,直线MP扫过正方形所形成的面积为y,点P运动的路程为x,则表示y与x的函数关系的图象为( )ABCD7.如图,直角梯形ABCD中,A=90,B=45,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EMAB于M,ENAD于N,设BM=x,矩形AMEN的面积为y,那么y与x之间的函数关系的图象大致是( )9、如图,两个等腰、的斜边都为cm,D、M分别是AB、AC边上的中点,又DE与AC(或BC)交于点P,当点P从M出发以1cm/s的速度沿MC运动至C后又立即沿CB运动至B结束。若运动时间为t(单位:s),和重叠部分的面积为y(单位:cm2)则y的图像大致是( )三、发散探索类12在矩形ABCD中,AD=6,AB=4,以AD为直径画,则直线BC与的位置关系是_13如图,将直角三角板EFG的直角顶点E放置在平行四边形ABCD内,顶点F、G分别在AD、BC上,若,则=_14如图,在菱形ABCD中,E为垂足,EC=2,则菱形ABCD的边长为_四、综合分析类17如图,四边形ABCD为一梯形纸片,AB/CD,AD=BC翻折纸片ABCD,使点A与点C重合,折痕为EF连接CE、CF、BD,AC、BD的交点为O,若,AB=7,CD=3下列结论中:AC=BD,EFBD,S四边形AECF=, 连接FO;则FO/AB正确的序号是_。(17题图)18.如图,已知ABCD中,DBC=45,DEBC于E,BFCD于F,DE、BF 相交于H,BF、AD的延长线相交于G,下面结论:DB=BE;A=BHE;AB=BH;BHDBDG,BH=HG.其中正确的结论有_(填上正确结论的番号).ADBCE第21题图 21如图,将沿折叠,使点与边的中点重合,下列结论中:且;,正确的个数是( )A1B2C3D4五、解答试题 F P 1、(10分)如图,正方形ABCD边长为4,点P是对角线BD上一点,过点P作PEBC于E,PFCD于F,连接EF,AP A D (1) 求证:AP=EF (2) 若PB:PD=1:3,求四边形PECFDE的面积 2如图,正方形ABCD的对角线交于点O,点E是线段OD上一点,连接EC,作于点F,交OC于点G (1)求证:BG=CE; (2)若AB=4BF是的角平分线,求OG的长3如图,正方形ABCD中,以对角线BD为边作菱形BDFE,使B,C,E三点在同一直线上,连结BF,交CD与点G(1)求证:CG=CE(2)若正方形边长为4,求四边形CEFG的面积4、如图,梯形ABCD中,,。点E、F是梯形ABCD外的两点,且,(1)求证:;(2)若,求线段的长5.(10分)已知,矩形ABCD中,延长BC至E,使BE=BD,F为DE的中点,连结AF、CF.求证:(1)ADF=BCF; (2) AFCF.6如图正方形ABCD中,E为AD边上的中点,过A作AFBE,交CD边于F,M是AD边上一点,且有BMDMCD 求证:点F是CD边的中点; 求证:MBC2ABE8已知梯形中,于于相交于的中点(1)若点为线段上一点,且过点作于试证:CD(2)求证:EOHBGFA9 如图,在等腰梯形ABCD中,ADBC,BC=2AD=2AB,点E、F分别在AD、AB上,AE=BF,DF与CE相交于点P. (1) 求证:ADF=DCE; (2)求DPC的度数. 10. (10分)已知如图,四边形ABCD为平行四边形, , AC为对角线 ,BMAC,过点D作 DE/CM,交AC的延长线于F,交BM的延长线于E.(1) 求证:ADFBCM; (2) 若AC=2CF,ADC=60 o, ACDC,求四边形ABED的面积(用含a的代数式表示)。 第24题图11如图,在梯形ABCD中,ABCD,AD=BC,延长AB至E,使BE=CD,连结CE 求证:CE=CA; 在上述条件下,延长EC、AD交于G,若AFCE于点F,且AF平分DAE试判断GAE的形状,并说明理由(第26题)12.(重庆潼南2010)(10分) 如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连结AG,点E、F分别在AG上,连接BE、DF,1=2 , 3=4.(1)证明:ABEDAF;(2)若AGB=30,求EF的长.13(重庆2010) 已知:如图,在直角梯形ABCD中,ADBC,ABC90点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M点F在线段ME上,且满足CFAD,MFMA(1)若MFC120,求证:AM2MB;(2)求证:MPB90 FCMAEBFCD14(重庆綦江2010)如图,在直角梯形ABCD中,ADBC,A90,ABAD6,DECD交AB于E,DF平分CDE交BC于F,连接EF(1)证明:CFEF;(2)当tanADE时,求EF的长2011年重庆中考第25题专题练习解答1.(20092010三中5月月考)25.重庆旺旺苗圃去年销售的某种树苗每棵的售价y(元)与月份x之间满足一次函数关系y=-x+62而去年的月销售量P(棵)与月份x之间成一次函数关系,其中两个月的销售情况如下表: (1)求该种树苗在去年哪个月销售金额最大?最大是多少?(2)由于受干旱影响,今年1月份该种树苗的销售量比去年12月份下降了25%若将今年1月份售出的树苗全部进行移栽,则移栽当年的存活率为(1-n%),且平均每棵树苗每年可吸碳1.6千克,随着该树苗对环境的适应及生长,第二年全部存活,且每棵树苗的吸碳能力增加0.5n%这样,这批树苗第二年的吸碳总量为5980千克,求n的值(保留一位小数)(参考数据: 1.414, 1.732, 2.236, 2.449)考点:一次函数的应用;二次函数的最值 分析:(1)由表格,已知两月的销售量,可用待定系数法确定月销售量与月份的解析式然后根据等量关系:月销售金额=售价月销售量,可得出函数关系式,再根据函数的性质,求出最大值(2)利用等量关系:吸碳量=树苗数量吸碳能力,列方程求解解答:解:(1)设p=kx+b,把(1,4100)和(5,4500)代入求得k=100,b=4000,因此,p=100x+4000其中,x是正整数,1x12,设月销售金额为w,则w=yp=(-x+62)(100x+4000)=-100x2+2200x+248000=-100(x-11)2+260100,x=11时,W最大=260100(元),故该种树苗在去年11月销售金额最大,最大是260100元(2)由(1)知,去年12月份该种树苗的销售量为10012+4000=5200(棵),故今年1月份的销售量为5200(1-25%)=3900(棵),由题意得,3900(1-n%)1.6(1+0.5n%)=5980,解得n=7.8,答:n的值为7.8点评:本题主要考查用待定系数法求一次函数关系式,二次函数求最值,解一元一次方程等知识,综合性较强,是一道好题2.(20092010西师附中九上期末)25、我市有一种可食用的野生菌,上市时,某经销公司按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格y(元)与存放天数x(天)之间的部分对应值如下表所示:但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存110天,同时,平均每天有3千克的野生菌损坏不能出售(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y与x的变化规律,并直接写出y与x之间的函数关系式;若存放x天后,将这批野生茵一次性出售,设这批野生菌的销售总额为P元,试求出P与x之间的函数关系式;(2)该公司将这批野生菌存放多少天后出售可获得最大利润w元并求出最大利润(利润=销售总额-收购成本-各种费用)(3)该公司以最大利润将这批野生菌一次性出售的当天,再次按市场价格收购这种野生1180千克,存放入冷库中一段时间后一次性出售,其它条件不变,若要使两次的总盈利不低于4.5万元,请你确定此时市场的最低价格应为多少元?(结果精确到个位,参考数据: )考点:二次函数的应用 分析:根据表格规律判断函数类别,就要对一次函数、二次函数和反比例函数的图象,性质有充分的了解,从表格可以看出,y随x的增大而均匀地增大,属于一次函数本题属于营销问题,根据:利润=销售总额-收购成本-各种费用再利用相应的函数关系式解决实际问题解答:解:由题意得:(1)y=x+30 P=y(1000-3x)=(x+30)(1000-3x)=-3x2+910x+30000(2)w=P-310x-100030=-3x2+910x+30000-310x-100030=-3x2+600x=-3(x-100)2+30000 0x110,当x=100时,利润w最大,最大利润为30000元该公司将这批野生茵存放100天后出售可获得最大利润30000元(3)由(2)可知,该公司以最大利润出售这批野生菌的当天,市场价格为130元设再次进货的野生茵存放a天,则利润w1=(a+130)(1180-3a)-310a-1301180=-3a2+480a两次的总利润为w2=-3a2+480a+30000 由-3a2+480a+30000=45000,解得 -30 当 时,两次的总利润不低于4.5万元 又0x110, ,当a43时,此时市场价格最低,市场最低价格应173元点评:本题考查一次函数、二次函数求法及二次函数的实际应用此题为数学建模题,借助二次函数解决实际问题3.(2009-2010西师附中九上12月月考)25.重百电器商场某畅销品牌电视机今年上半年(1-6月份)每台的售价y(元)与月份x之间满足函数关系y=-50x+3500,上半年的月销售量p(台)与月份x之间成一次函数关系,其中两个月的销售情况如表:(1)求该品牌电视机在今年上半年哪个月的销售金额最大?最大是多少?(2)受国际经济形势的影响,从7月份开始全国经济出现通货膨胀,商品价格普遍上涨今年7月份该品牌电视机的售价比6月份上涨了m%,但7月的销售量比6月份下降了2m%商场为了促进销量,8月份决定对该品牌电视机实行九折优惠促销受此政策的刺激,该品牌电视机销售量比7月份增加了220台,且总销售额比6月份增加了15.5%,求m的值考点:一次函数的应用分析:(1)先设出月销量p与月份x的关系式,然后将表中数据代入求出关系式,再根据售价y与x的关系即可求出销售额,最后求出最大销售额的月份;(2)题中等量关系是:8月份销售量-7月份销售量=220,8月份销售额比6月份销售额增加了15.5%,根据等量关系列出方程式,最后解答解答:解:(1)由题意,设p=kx+b,将(1,550)、(4,580)代入得p=10x+540,(1分)设第x个月的销售金额为W元,则W=py=(10x+540)(-50x+3500)(1x6且为整数)=-500x2+8000x+1890000,(3分)对称轴为 ,1x6且为整数,(4分)当x=6时,Wmax=1920000元;(5分)(2)6月份的销量为600台,售价为3200元,由题意3200(1+m%)0.9600(1-2m%)+220=3200600(1+15.5%)(7分),(100+m)0.9(820-12m)=600115.5,(100+m)(410-6m)=38500,然后得到3m2+95m-1250=0,变形的(m-10)(3m+125)=0,m=10或 (舍),m=10(9分)点评:本题主要考查对于一次函数的综合应用4(2011三中三月月考)25.我市“上品”房地产开发公司于2010年5月份完工一商品房小区,6月初开始销售,其中6月的销售单价为,7月的销售单价为,且每月销售价格(单位:)与月份为整数)之间满足一次函数关系:每月的销售面积为(单位:),其中为整数)(1)求与月份的函数关系式;(2)611月中,哪一个月的销售额最高?最高销售额为多少万元?(3)2010年11月时,因会受到即将实行的“国八条”和房产税政策的影响,该公司销售部预计12月份的销售面积会在11月销售面积基础上减少,于是决定将12月份的销售价格在11月的基础上增加,该计划顺利完成为了尽快收回资金,2011年1月公司进行降价促销,该月销售额为万元这样12月、1月的销售额共为万元,请根据以上条件求出的值为多少?解:(1)设由题意解得:.2分(2)设第x个月的销售额为万元,则.4分.5分对称轴为直线当是随x的增大而减小当x=6时,6分6月份的销售额最大为9800万元。(3) 11月的销售面积为:11月份的销售价格为:由题意得:8分化简得:解得:(舍) .10分5(2009重庆25)某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系,去年的月销售量p(万台)与月份x之间成一次函数关系,其中两个月的销售情况如下表:月份1月5月销售量3.9万台4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了,且每月的销售量都比去年12月份下降了1.5m%国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求的值(保留一位小数)(参考数据:,)解:(1)设与的函数关系为,根据题意,得(1分)解得所以,(2分)设月销售金额为万元,则(3分)化简,得,所以,当时,取得最大值,最大值为10125答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元(4分)(2)去年12月份每台的售价为(元),去年12月份的销售量为(万台),(5分)根据题意,得(8分)令,原方程可化为,(舍去)答:的值约为52.8(10分)6.(2010重庆,25,10分)今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:周数x1234价格y(元/千克)2222426进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的28元/千克下降至第2周的24元/千克,且y与周数x的变化情况满足二次函数y x2bxc(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x 的函数关系式,并求出5月份y与x的函数关系式;(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为mx12,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m-x2试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月份的第2周共销售100吨此种蔬菜从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a %,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨08 a %若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值(参考数据:3721369,3821444,3921521,4021600,4121681)【分析】本题考查待定系数法确定函数解析式的和应用函数解决实际问题,在四月份可以看出4月份y与x 的函数关系式应符合一次函数的关系,将五月的两对数值代入即可求出二次函数的解析式,第二问根据利润等于售价减去进价列出函数关系式比较得出函数关系式比较即可,第三问根据;总销售额售价出售的量,并且第三周的总销售额与第2周刚好持平得到等量关系【答案】(1)通过观察可见四月份周数y与x 的符合一次函数关系式:y02x18;将(1,28)(2,24)代入y x2bxc可得:解之:即yx2 x31(2)(2)设4月份第x周销售此种蔬菜一千克的利润为元,5月份第x周销售此种蔬菜一千克的利润为元.(3分)-0.050,随x的增大而减小.当时,最大=-0.05+0.6=0.55.(4分)=(5分)对称轴为且-0.050,x-0.5时,y随x的增大而减小.当x=1时,最大=1.(6分)所以4月份销售此种蔬菜一千克的利润在第1周最大,最大利润为0.55元;5月份销售此种蔬菜一千克的利润在第1周最大,最大利润为1元. (3)由题意可得:整理得:,解之得:,所以8,31(舍去) 所以估算a整数约为8【涉及知识点】函数解析式的应用,一元二次方程的解法【点评】待定系数法确定函数解析式是中考的热点问题,尤其是第一问中对函数的认识通过各点的特点来判断变量之间的函数关系式;在本题中的第三问中数据较多,需要学生能够在众多的数据中理清等量关系,代入计算,还要熟练掌握一元二次方程的求根公式法的应用7(重庆一中初2011级3月月考25)重庆市垫江县具有2000多年的牡丹种植历史每年3月下旬至4月上旬,主要分布在该县太平镇、澄溪镇明月山一带的牡丹迎春怒放,美不胜收由于牡丹之根丹皮是重要中药材,目前已种植有60多个品种2万余亩牡丹的垫江,因此成为我国丹皮出口基地,获得“丹皮之乡”的美誉。为了提高农户收入,该县决定在现有基础上开荒种植牡丹并实行政府补贴,规定每新种植一亩牡丹一次性补贴农户若干元,经调查,种植亩数(亩)与补贴数额(元)之间成一次函数关系,且补贴与种植情况如下表:补贴数额(元) 10 20 种植亩数(亩) 160 240随着补贴数额的不断增大,种植规模也不断增加,但每亩牡丹的收益(元)会相应降低,且该县补贴政策实施前每亩牡丹的收益为3000元,而每补贴10元(补贴数为10元的整数倍),每亩牡丹的收益会相应减少30元(1)分别求出政府补贴政策实施后,种植亩数(亩)、每亩牡丹的收益(元)与政府补贴数额(元)之间的函数关系式;(2)要使全县新种植的牡丹总收益(元)最大,又要从政府的角度出发,政府应将每亩补数额定为多少元?并求出总收益的最大值和此时种植亩数;(总收益=每亩收益亩数)(3)在(2)问中取得最大总收益的情况下,为了发展旅游业,需占用其中不超过50亩的新种牡丹园,利用其树间空地种植刚由国际牡丹园培育出的“黑桃皇后”已知引进该新品种平均每亩的费用为530元,此外还要购置其它设备,这项费用(元)等于种植面积(亩)的平方的25倍这样混种了“黑桃皇后”的这部分土地比原来种植单一品种牡丹时每亩的平均收益增加了2000元,这部分混种土地在扣除所有费用后总收益为85000元求混种牡丹的土地有多少亩?(结果精确到个位)(参考数据:)解:(1)y=kx+b过(10,160)(20,240) y=8x+801分2分 (2)W=yz=(8x+80)(3x+3000) =24x2+23760x+240000 =24(x2990x+49524952)+240000 =24(x495)2+6120600 x为10的整数倍 当x=490或x=500时,W最大61200005分 从政府角度出发 当x=490时,W最大61200006分 此时种植y=8490+80=4000亩 (3)此时平均每亩收益(元) 设混种牡丹的土地m亩,则 (1530+2000)m530m25m2=85000 m2120m+3400=08分 解得:m=6010 m1=60+1074 第3年收取的租金最多,最多为243百万元. 6分 (3)当x=6时,y=百万平方米400万平方米 当x=10时,y=百万平方米350万平方米 第6年可解决20万人住房问题,人均住房为:4002020平方米. 由题意: 20(1-1.35a%)20(1+a%)=350 设a%=m, 化简为: 54m2+14m-5=0 =142-454(-5)=1276 m1=0.2, (不符题意,舍去) a%=0.2, a=20 答:a的值为20. 10分25(重庆一中初2011级10-11学年度下期开学定时作业)为发展“低碳经济”,某单位进行技术革新, 让可再生资源重新利用. 从今年1月1日开始,该单位每月再生资源处理量y(吨)与月份x之间成如下一次函数关系:月份x 12再生资源处理量y(吨)4050月处理成本z(元)与每月再生资源处理量y(吨)之间的函数关系可近似地表示为: z =,每处理一吨再生资源得到的新产品的售价定为100元.(1)该单位哪个月获得利润最大?最大是多少?(2)随着人们环保意识的增加,该单位需求的可再生资源数量受限。今年三、四月份的再生资源处理量都比二月份减少了m% ,该新产品的产量也随之减少,其售价都比二月份的售价增加了0.6m%.五月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了20% .如果该单位在保持三月份的再生资源处理量和新产品售价的基础上,其利润是二月份的利润的一样,求m ( m保留整数) ()25. 解:(1)y=10x+30z= =50 x2+100x+550 2分利润S=100yz = 50x2+900x+2450当x=9时,S最大=6500元 4分(2)二月处理量:50吨 二月价格:100元/吨 二月成本:950元 二月利润:4050元 三月、四月、五月处理量:50(1m%)吨三月、四月、五月价格:100(1+0.6 m%)元五月成本:950 (120%)元 6分五月利润:1008分令m%=a, 则a =a 1= a 2= m8 10分4、某公司生产的某种时令商品每件成本为20元,经过在本地市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表: 时间t(天)1361036日销售量m(件)9490847624未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为 (1t20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为 (21t40且t为整数)下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测本地市场在未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在第30天,该公司在外地市场的销量比本地市场的销量增加a%还多30件,由于运输等原因,该商品每件成本比本地增加0.2a%少5元,在销售价格相同的情况下当日两地利润持平,请你参考以下数据,通过计算估算出a的整数值(参考数据: , , , , )考点:二次函数的应用专题:应用题;图表型;函数思想;方程思想分析:(1)通过观察表格中的数据日销售量与时间t是均匀减少的,所以确定m与t是一次函数关系,利用待定系数法即可求出函数关系式;(2)分前20天和后20天分别讨论:根据日销售量、每天的价格及时间t可以列出销售利润W关于t的二次函数,然后利用二次函数的性质即可求出哪一天的日销售利润最大,最大日销售利润是多少;(3)由于在第30天,利用(1)中结论和已知条件可以求出本地的利润,也可以根据该公司在外地市场的销量比本地市场的销量增加a%还多30件,由于运输等原因,该商品每件成本比本地增加0.2a%少5元,可以用a列出外地销售利润,然后根据在销售价格相同的情况下当日两地利润持平可以列出关于a的方程,解方程即可求解解答:解:(1)根据表格知道日销售量与时间t是均匀减少的,确定m与t是一次函数关系,设函数关系式为:m=kt+b,当t=1,m=94;当t=3,m=90, ,解之得: ,m=-2t+96;(2)前20天:每天的价格y(元)与时间t天的函数关系式为y= t+25,而商品每件成本为20元,每件获取的利润为( t+25-20)=( t+5)元,又日销售量y(件)与时间t(天)的函数关系式为:y=-2t+96,故:前20天每天获取的利润 P=( t+5)(-2t+96)=- t2+14t+480P=- (t-14)2+382 (1t20) 根据二次函数的相关性质可知:t=14时,日获利润最大,且为382元; 后20天:每天的价格y(元)与时间t天的函数关系式为y=- t+40,而商品每件成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论