



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12.3 角的平分线的性质(1)学习目标 1.经历角的平分线性质的发现过程,初步掌握角的平分线的性质2.通过测量操作,发现角的平分线的性质定理3.能运用角的平分线性质和判定解决简单的几何问题.学习重点:掌握角的平分线的性质学习难点:角的平分线的性质的应用学情分析:本节课的内容是全等三角形知识的运用和延续,角的平分线的性质的研究过程为以后学习线段垂直平分线的性质提供了思路和方法;角平分线的性质的证明提供了使用角的平分线的一种重要模式-利用角的平分线构造两个全等的直角三角形,进而证明相关元素对应相等。学法指导:观察思考,动手操作,合作探究学习过程一、学前准备1、自学课本48、49面并思考1什么是角的平分线?怎样画一个角的平分线?2. 有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A点放角的顶点,AB和AD沿AC画一条射线AE,AE就是BAD的平分线,为什么?二、合作探究探究1.(1)从上面对平分角的仪器的探究中,可以得出作已知角的平分线的方法。(2)把简易平分角的仪器放在角的两边.且平分角的仪器两边相等,从几何角度怎么画?(3) 简易平分角的仪器BC=DC,从几何角度如何画(4)OC与简易平分角的仪器中,AE是同一条射线吗?(5)你能说明OC是AOB的平分线吗?探究2.在角的平分线OC上任意找一点P,过P点分别作OA、OB的垂线交OA、O于M、N, PM、PN的长度是AOB的平分线上一点到AOB两边的距离. (1) 操作测量:取点P的三个不同的位置,分别过点P作PDOA,PE OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:PMPN第一次第二次 第三次 观察测量结果,猜想线段PD与PE的大小关系,写出结论:_ (2) 你能用三角形全等证明这个结论吗?(3) 你能归纳角的平分线的性质吗?并用几何符号表示出来。三、新知应用1.例题:如图,ABC的角平分线BM、CN相交于点P求证:点P到三边AB、BC、CA的距离相等分析:点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,也就是说要证:PD=PE=PF而BM、CN分别是B、C的平分线,根据角平分线性质和等式的传递性可以解决这个问题2如图,ABC的B的外角平分线BD与C的外角的平分组CE相交于P, 求证:点P到三边AB,BC,CA所在直线的距离相等。3ABC中,AD是它的角平分线,且BDCD,DEAB,DFAC,垂足分别为E,F, 求证EBFC五、课堂小结 1. 这节课你学到了哪些知识?2. 你还有什么疑惑?六、反馈提高1.在ABC中,C90,AD是BAC的角平分线,若BC5,BD3,则点D到AB的距离为。2.AOB的平分线上一点M,M到OA的距离为1.5,则M到OB的距离为。3.如图,A90,BD是ABC的角平分线,AC8,DC3DA,则点D到BC的距离为 。4.如图,12,PDOA,PEOB,垂足分别为D,E,下列结论错误的是()A、PDPEB、ODOEC、DPOEPOD、PDOD5.三角形中到三边距离相等的点是()A、三条边的垂直平分线的交点 B、三条高的交点C、三条中线的交点D、三条角平分线的交点6.如图,AD是BAC的平分线,DEAB于E,D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 连锁餐厅库存管理系统合作协议
- 国际商务跨文化交际知识试题库
- 设备维修预估费用明细表
- 互联网营销的成功案例分析
- 一氧化碳中试平台在工业领域的应用与挑战
- 工业一般固废循环利用及填埋处置项目实施方案
- 2025年信息技术应用能力考试模拟试卷及答案
- 2025年心理学专业考试试题及答案
- 2025年人机接口与交互设计相关知识测试卷及答案
- 2025年教育管理学与教育政策硕士专业考试题及答案
- 水电站安全知识
- 2025年教育观念测试题及答案
- 2024年贵州省普通高中学业水平选择性考试地理试题(原卷版+解析版)
- 三年级下册语文1-8单元写作范文
- 游泳安全讲座
- 中小企业车间租赁合同范本
- 2025年江苏盐城燕舞集团有限公司招聘笔试参考题库含答案解析
- 手持砂轮机培训课件
- 辐射防护复习题及答案
- 2024年上海市中考英语试题和答案
- 安全管理红线
评论
0/150
提交评论