




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版六年级下册数学数学广角教学设计南昌县武阳镇中心小学:徐青青(一)教学目标1、知识与技能 通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。 2、过程与方法 结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。 3、情感态度和价值观 在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。(二)教学重难点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。 教学难点:理解“总有”“至少”的意义,理解“至少数=商数1”。(三)教学准备多媒体课件。每组3个文具盒和4支铅笔。(四)教学过程一、情景导入教师:同学们,你们在一些公共场所或旅游景点见过电脑算命吗?“电脑算命”看起来很深奥,只要你报出自己的出生年月日和性别,一按键,屏幕上就会出现所谓性格、命运的句子。通过今天的学习,我们掌握了“鸽巢问题”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不可相信的鬼把戏了。(板书课题:鸽巢问题)教师:通过学习,你想解决哪些问题?根据学生回答,教师把学生提出的问题归结为:“鸽巢问题”是怎样的?这里的“鸽巢”是指什么?运用“鸽巢问题”能解决哪些问题?怎样运用“鸽巢问题”解决问题?二、新课讲授1.教师展示例1的问题。同学们手中都有铅笔和文具盒,现在分小组形式动手操作:把四支铅笔放进三个标有序号的文具盒中,看看能得出什么样的结论。组织学生分组操作,并在小组中议一议,用铅笔在文具盒里放一放。教师指名汇报。学生汇报时会说出:1号文具盒放4枝铅笔,2号、3号文具盒均放0枝铅笔。教师:不妨将这种放法记为(4,0,0)。板书:(4,0,0)教师提出:(4,0,0)(0,4,0)(0,0,4,)为一种放法。教师:除了这种放法,还有其他的方法吗?教师再指名汇报。学生会有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。教师板书。教师:还有不同的放法吗?教师:通过刚才的操作,你能发现什么?(不管怎么放,总有一个盒子里至少有2枝铅笔。)教师:“总有”是什么意思?(一定有)教师:“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝)教师:就是不能少于2枝。(通过操作让学生充分体验感受)教师进一步引导学生探究:把5枝铅笔放进4个文具盒,总有一个文具盒要放进几枝铅笔?指名学生说一说,并且说一说为什么?教师:把4枝笔放进3个盒子里,和把5枝笔放进4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作发现的这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?学生思考组内交流汇报教师:哪一组同学能把你们的想法汇报一下?学生会说:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。教师:你能结合操作给大家演示一遍吗?(学生操作演示)教师:同学们自己说说看,同桌之间边演示边说一说好吗?教师:这种分法,实际就是先怎么分的?学生:平均分。教师:为什么要先平均分?(组织学生讨论)学生汇报:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在哪个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。这样分,只分一次就能确定总有一个盒子至少有几枝笔了?教师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说) 教师:哪位同学能把你的想法汇报一下?学生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。师:把6枝笔放进5个盒子里呢?还用摆吗?生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。 师:把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?教师:你发现什么?学生:铅笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。教师:你们的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。把100枝铅笔放进99个文具盒里会有什么结论?一起说。巩固练习:教材第68页“做一做”。A组织学生在小组中交流解答。B指名学生汇报解答思路及过程。 2.教学例2。出示题目:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请同学们小组合作探究。探究时,可以利用每组桌上的7本书。活动要求:a.每人限独立思考。b.把自己的想法和小组同学交流。c.如果需要动手操作,可以利用每桌上的7本书,要有分工,并要全面考虑问题。(谁分铅笔,谁当抽屉,谁记录等)d.在全班交流汇报。(师巡视了解各种情况)学生汇报。哪个小组愿意说说你们的方法?把你们的发现和大家一起分享,学生可能会有以下方法:a.动手操作列举法。学生:通过操作,我们把7本书放进3个抽屉,总有一个抽屉至少放进3本书。b.数的分解法。把7分解成三个数,有(7,0),(6,1),(5,2),(4,3)四种情况。在任何一种情况下,总有一个数不小于3。教师:通过动手摆放及把数分解两种方法,我们知道把7本书放进3个抽屉,总有一个抽屉至少放进几本书?(3本)教师质疑引出假设法。教师:同学们通过以上两种方法,知道了把7本书放进3个抽屉,总有一个抽屉至少放进3本书,但随着书的本数越多,数据变大,如:要把155本书放进3个抽屉呢?用列举法、数的分解法会怎么样?(繁琐)我们能不能找到一种适用各种数据的方法呢?请同学们想想。 板书:7本3个2本?余1本(总有一个抽屉里至少有3本书) 8本3个2本?余2本(总有一个抽屉里至少有3本书) 10本3个3本?余1本(总有一个抽屉里至少有4本书) 师:2本、3本、4本是怎么得到的? 生:完成除法算式。 73=2本?1本(商加1) 83=2本?2本(商加1) 103=3本?1本(商加1) 师:观察板书你能发现什么? 学生:“总有一个抽屉里的至少有3本”,只要用“商+1”就可以得到。 师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 学生:“总有一个抽屉里至少有3本”只要用53=1本?2本,用“商+2”就可以了。 学生有可能会说:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。 师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论、交流、说理活动。可能有三种说法:a.我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。 b.把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。 c.我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。 教师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢? 学生回答:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。 教师讲解:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。 提问:尽量把书平均分给各个抽屉,看每个抽屉能分到多少本书,你们能用什么方式表示这一平均的过程呢? 学生在练习本上列式:73=2?1。 集体订正后提问:这个有余数的除法算式说明了什么问题? 生:把7本书平均放进3个抽屉,每个抽屉有两本书,还剩一本,把剩下的一本不管放进哪个抽屉,总有一个抽屉至少放三本书。 引导学生归纳鸽巢问题的一般规律。 a.提问:如果把10本书放进3个抽屉会怎样?13本呢? b.学生列式回答。 c.教师板书算式:103=3?1(总有一个抽屉至少放4本书) 133=4?1(总有一个抽屉至少放5本书) 观察特点,寻找规律。 提问:观察3组算式,你能发现什么规律? 引导学生总结归纳出:把某一数量(奇数)的书放进三个抽屉,只要用这个数除以3,总有一个抽屉至少放进书的本数比商多一。 提问:如果把8本书放进3个抽屉里会怎样,为什么? 83=2?2 学生汇报。可能出现两种情况:一种认为总有一个抽屉至少放3本书;一种认为总有一个抽屉至少放4本书。 学生讨论。讨论后,学生明白:不是商加余数2,而是商加1。因为剩下两本,也可能分别放进两个抽屉里,一个抽屉一本,相当于数的分解(3,3,2)。所以,总有一个抽屉至少放3本书。 总结归纳鸽巢问题的一般规律。 要把a个物体放进n个抽屉里,如果an=b?c(c0),那么一定有一个抽屉至少放(b+1)个物体。三、巩固应用 教材第69页“做一做”。(1)组织学生在小组中交流解答。(2)指名学生汇报解答思路及过程。四、课后作业 完成练习册中本课时的练习。 (五)板书设计鸽巢问题 把四支铅笔放进三个标有序号的文具盒中,看看能得出什么样的结论。(4,0,0)(0,1,3)(2,2,0)(2,1,1) “抽屉原理”又称“鸽笼原理”又称“狄里克雷原理”,也称为“鸽巢原理”。要把a个物体放进n个抽屉里,如果an=b?c(c0),那么一定有一个抽屉至少放(b+1)个物体。(六)教学反思只有学生主动参与到学习活动中,才是有效的教学。在教学过程中,充分利用学具操作,如把4支笔放入3个杯子学习中,把5支笔放入2个杯子学习中等,都是让学生自己操作,这为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。(七)数学广角鸽巢问题:课时作业设计一、用心思考,正确填空。(39分,每题3分。)(1)把5本书放进2个抽屉里,至少有()本书放进同一个抽屉里。(2)把4枝铅笔放进3个文具盒中,不管怎么放,总有一个文具盒里至少放进()枝铅笔。(3)一个盒子里有形状、大小相同的黑、白两种棋子各16枚,要使摸出的棋子一定有2枚同色的,最少要摸出()枚棋子。(4)抽屉里有4支红铅笔和3支蓝铅笔,如果闭着眼睛摸,一次必须拿()支,才能保证至少有1支蓝铅笔。(5)6只鸡放进5个鸡笼,至少有()只鸡要放进同一个鸡笼里。(6)在14个在1999年出生的儿童中,至少有()个人是同一月出生的。(7)随意找14位老师,至少有()名老师的属相相同。(8)把5个梨放进4个盘里,总有()个盘子至少放2个梨。(9)盒子里面有红、黄、白三种颜色的球各6个,要想摸出的球一定有2个同色的,至少要摸出()个球。(10)把黄、红两种颜色的球各4个,放到同一个盒子里,至少取()个球可以保证取到2个颜色相同的球。(11)今天有数学、英语、语文三科作业,教室里有4名学生正在做作业,至少有( )个学生正在做英语作业。(12)有5瓶多种维生素,其中一瓶少了4片。如果用天平称,每次称1瓶,至少称( )次才能找到少药片的那瓶;如果每次称两瓶,至少( )次才能找到。(13)星期天,小明买来3只小兔子,但他只有甲、乙两个笼子,他有()种放法,至少有一个笼子有()只兔子。二、仔细推敲,认真判断。(每题2分,共18分)1、32只鸽子飞回7个鸽舍,至少有5只鸽子要飞进同个鸽舍。()2、张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。()3、把9条金鱼放进8个鱼缸里,总有一个鱼缸至少放3条。()4、9只兔子装入4个笼子,总有一个笼子至少放3只兔子。()5、把4枝铅笔放进两个文具盒中,放法算不清。()6、国俭小学有37名学生,这个班中至少有3人是同一个月出生的。()7、5只小鸡装入4个笼子,至少有一个笼子放小鸡3只。()8、任意给出3个不同的自然数,其中一定有2个数的和是偶数。()9、学校将新买的19张课桌分给6个班,总有一个班至少分到4张课桌。()三、反复比较,慎重选择(填正确答案的序号)(每小题3分,共15分)1、下面问题可以运用“鸽巢原理”解决的是()A、在一条线段中间点上3个点,以每两点为端点的线段共有多少条。B、从A到B有2条路,从B到C有3条路,从A到C有多少种不同的走法。C、4名男生分到3个小组做游戏,至少有几名男生要分到同一个组里。2、因为113=32,所以把11本书放进3个抽屉中,总有一个抽屉中至少放()本书。A、3B、4C、53、给一个正方体的六个面分别涂上蓝、黄两种颜色。不论怎么涂至少有()个面涂的颜色相同。A2B3C44、张阿姨给孩子买衣服,有红、黄、白三种颜色,但结果总
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高端酒店管理公司股权并购与品牌运营合同
- 离婚协议书中违约情形判定标准及违约金支付合同
- 离婚时夫妻共同财产评估及分割标准合同
- 企业融资租赁借款合同签订要点与风险防范
- 离婚协议书:财产清算与子女抚养、赡养执行方案
- 离婚协议中房产分割及子女抚养教育费用承担协议
- 离婚前财产保全与分配执行及债务处理协议书
- 国际物流供应链合同风险管理与合规性审查
- 离婚后房产、车辆及共同债务分割协议
- 物业转供电合同模板:商业园区电力服务协议
- 建筑设计公司结构设计师工作手册
- 2025年青海省事业单位招聘考试卫生类护理学专业知识试题
- 宝宝呛奶科普课件
- 安全注射标准WST856-2025学习解读课件
- Z世代对消费场所视觉对比度
- 语言认同建构机制-第1篇-洞察及研究
- 2025年贵州省中考物理试题及答案
- 造血干细胞移植并发症
- (2025年标准)sm调教协议书
- 工会委员候选人选票(式样)
- 55790《表面工程学(第2版)》教学大纲
评论
0/150
提交评论