免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.2.2 平行线的判定(第一课时)一、教学目标:1知识与技能:(1)从“用三角尺和直尺画平行线的活动过程中发现”同位角相等,两直线平行;培养学生动手操作,主动探究及合作交流的能力。(2)会用平行线的判定方法判定两直线平行,初步学会用几何语言进行简单推理和表述。2过程与方法:在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己地探索过程和结果,从而进一步加强学生分析,概括、表达能力。3情感态度价值观:让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度。二、教学重难点: 重点: 平行线的三种判定方法,并运用这三种方法判断两直线平行.难点:运用平行线的判定方法进行简单的推理.三、教学教具:多媒体、三角板、直尺 四、教学方法:启发式五、教学过程: (一)复习并导入新课:上一节课我们学习了平行线,平行公理及其推论,如何用平行线的定义及平行公理的推论来说明两直线平行(学生回答),根据学生的回答,教师总结,如果用平行线定义难以说明两条直线没有交点,平行公理的推论对条件要求较强,要有三条平行线,且其中的两条分别与第三条平行。你能否运用这两种方法来说明下面这两个问题的道理?如果只有a、b两条直线如何判断他们是否平行呢?说明这两个途径都有一定的局限性,那么有没有其他的途径判定两条直线是否平行的方法呢?今天我们一起来探讨平行线的判定方法。(二)探究新知:1、平行线的判定方法(1)让学生回忆并叙述上节用三角板和直尺过一点P画已知直线AB的平行线的过程,你能发现这种画法实际上是画一对什么角相等吗?(让学生观察图形后回答,这两个角是直线AB、CD被EF截得的同位角)。判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单地说:同位角相等,两直线平行。结合图形,引导学生用符号语言表述平行线判定公理:1=2 (已知) ab (同位角相等,两直线平行) 思考:右图中,如果1=7,能得出ABCD吗? 写出你的推理过程。(2)平行线的判定方法2的推导先采用探讨问题的方式,启发学生去思考,能不能从内错角之间的关系或同旁内角之间的关系来判定两条直线平行呢?让学生观察图形分析,引导学生分析角之间的关系,发现新结论:判定方法2:两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简单地说:内错角相等,两直线平行。结合图形引导学生用符号语言表述上面的推理过程已知:直线AB、CD被EF所截,1=7,求证:ABCD证明:1=7(已知)1=3(对顶角相等)7=3(等量代换)ABCD (同位角相等,两直线平行)(3)探究平行线的判定方法3思考:如图:如果1+2=180 能判定a/b 吗?解:能. 1+2=180 (已知) 1+3=180 (邻补角定义) 2=3(同角的补角相等) a/b (同位角相等,两直线平行)判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简单地说:同旁内角互补,两直线平行。练习:(快速抢答)1.如图,(1)从1=2,可以推出 , 理由是 ; (2)从2= ,可以推出 cd , 理由是 ; (3)从4=75,3=75,可以推出 。 (4)从4=75, 5= , 可以推出 a b . 设计意图:教师放手让学生通过讨论解决问题,培养了学生的动手能力,提高了合作意识。 教师要鼓励学生运用自己的语言有条理的表达自己的观点,并说明理由。归纳:平行线的判定 同位角相等,两直线平行。 内错角相等,两直线平行。 同旁内角互补,两直线平行。例1 如图: 2 =_(已知) _( ) 3 = 5(已知) _( ) 4 +_=180o(已知) _( )例2 如图: 1 =_(已知) ABCE( ) 1 +_=180(已知) CDBF( ) 1 +5 =180o(已知) _( ) 4 +_=180o(已知) CEAB( )例3 如图,两条直线b、c都垂直于同一条直线a ,这两条直线b、c平行吗?为什么?解:(由师生共同分析,由学生独立完成)平行ba,ca(已知)1290(垂直定义)bc(同位角相等,两直线平行)判定方法4:在同一平面内,两条直线都与第三条直线垂直,这两条直线平行。简单地说:垂直于同一直线的两直线平行。用符号语言可表示为:ab,ac(已知)b/c(垂直于同一直线的两条直线平行)师生共同总结:两条直线平行的证明方法:(目前共5种方法)方法1:同位角相等,两直线平行方法2:内错角相等,两直线平行方法3:同旁内角互补,两直线平行方法4:两条直线都与第三条直线平行,那么这两条直线也平行方法5:在同一平面内,两条直线都与第三条直线垂直,这两条直线平行。 想一想:你能运用平行线的判定方法来解决本节课开始时提出的问题吗?(三)归纳小结:(学生谈收获)通过这节课的学习,你学到了什么?你有什么经验与收获和大家共享?归纳如下:1、 平行线判定的方法:5种,根据不同情况作出选择;2、 说理过程的严谨;3、 遇到一个新问题时,常把它转化为已知的或已解决的问题;4、 体会数学来源于生活,又应用于生活的数学思想。(4) 当堂检测: 如图:直线AB、CD都和AE相交, 且1+A=180 试说明:AB/CD (学生独立完成,有困难的学生可以相互交流,师巡视指导) (五)作业布置 习题5.2 第 2、4、7 题教学反思:这节课以生活中引发的问题为背景引入,采用“新课引入探究新知新知巩固运用新知解决实际问题归纳小结”为主线的教学程序。遵循学生从已知到未知的认知规律,使学生感到新旧知识之间的密切联系。坚持学生为主体,教师为主导,让学生在教师的指导下自始至终处于积极思维,主动探究的学习状态,同时借助多媒体进行演示,以增加教学的直观性。在例题与练习的选择上注重有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 食堂员工合同协议模板
- 美团小哥雇佣合同范本
- 网建设与维护合同范本
- 酒店全包装修合同范本
- 物业前期介入协议合同
- 礼仪用品销售合同范本
- 街道打包服务合同范本
- 进口电线买卖合同范本
- 美术培训招生合同范本
- 物业监控维护合同范本
- 财税公司企业文化
- 远景风机培训课件
- 中国糖尿病防治指南(2024版)解读课件
- 《性别平等探讨》课件
- 八年级上学期期中语文试题(含答案)-1
- 医疗管理制度 - 浙江大学医学院附属第一医院·浙江省第一医院
- 警察校园一年级安全讲座
- 美国签证需要用到的个人简历模板(中英文)
- 达州市2025届高三第一次诊断性测试(一诊)语文试卷(含答案)
- 2024年共青团入团考试题库及答案
- 悬雍垂腭咽成形术手术配合
评论
0/150
提交评论