用向量方法解立体几何题练习-(老师用).doc_第1页
用向量方法解立体几何题练习-(老师用).doc_第2页
用向量方法解立体几何题练习-(老师用).doc_第3页
用向量方法解立体几何题练习-(老师用).doc_第4页
用向量方法解立体几何题练习-(老师用).doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.(2009北京卷)(本小题共14分)如图,四棱锥的底面是正方形,点E在棱PB上.()求证:平面; ()当且E为PB的中点时,求AE与平面PDB所成的角的大小.【解】如图,以D为原点建立空间直角坐标系, 设则,(),ACDP,ACDB,AC平面PDB,平面.()当且E为PB的中点时, 设ACBD=O,连接OE, 由()知AC平面PDB于O,AEO为AE与平面PDB所的角, ,即AE与平面PDB所成的角的大小为.2.(2009全国卷)(本小题满分12分). 如图,直三棱柱ABC-A1B1C1中,ABAC,D、E分别为AA1、B1C的中点,DE平面BCC1,()证明:AB=AC ()设二面角A-BD-C为60,求B1C与平面BCD所成的角的大小【解】()以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系Axyz。设B(1,0,0),C(0,b,0),D(0,0,c),则(1,0,2c),E(,c).于是=(,0),=(-1,b,0).由DE平面知DE BC, =0,求得b=1,所以 AB=AC。()设平面BCD的法向量 又=(-1,1, 0),=(-1,0,c),故 令x=1, 则y=1, z=,=(1,1, ).又平面的法向量=(0,1,0)由二面角为60知,=60,故 ,求得 ,于是 , , 所以与平面所成的角为303.(2009山东卷)(本小题满分12分) 如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB/CD,AB=4, BC=CD=2, AA=2, E、E、F分别是棱AD、AA、AB的中点。E A B C F E1 A1 B1 C1 D1 D x y z M (1) 证明:直线EE/平面FCC;(2) 求二面角B-FC-C的余弦值。 【解】(1)因为AB=4, BC=CD=2, F是棱AB的中点,所以BF=BC=CF,BCF为正三角形, 因为ABCD为等腰梯形,所以BAC=ABC=60,取AF的中点M,连接DM,则DMAB,所以DMCD,以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,则D(0,0,0),A(,-1,0),F(,1,0),C(0,2,0),C1(0,2,2),E(,0),E1(,-1,1),所以,设平面CC1F的法向量为则所以取,则,所以,所以直线EE/平面FCC. (2),设平面BFC1的法向量为,则所以,取,则, 所以,由图可知二面角B-FC-C为锐角,所以二面角B-FC-C的余弦值为. 4.(2009陕西卷)(本小题满分12分) 如图,直三棱柱中, AB=1,ABC=60.()证明:;CBAC1B1A1()求二面角AB的大小。 所以所成角是5安徽卷(18)(本小题满分12分)如图,在四棱锥中,底面四边长为1的菱形,, , ,为的中点,为的中点()证明:直线;()求异面直线AB与MD所成角的大小; ()求点B到平面OCD的距离。【解】作于点P,如图,分别以AB,AP,AO所在直线为轴建立坐标系,(1)设平面OCD的法向量为,则即 取,解得(2)设与所成的角为, , 与所成角的大小为(3)设点B到平面OCD的距离为,则为在向量上的投影的绝对值, 由 , 得.所以点B到平面OCD的距离为6山东卷(20)(本小题满分12分)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA平面ABCD,,E,F分别是BC, PC的中点.()证明:AEPD; ()若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角EAFC的余弦值.【解】(1)证明:由四边形ABCD为菱形,ABC=60,可得ABC为正三角形.因为 E为BC的中点,所以AEBC. 又 BCAD,因此AEAD.因为PA平面ABCD,AE平面ABCD,所以PAAE.而 PA平面PAD,AD平面PAD 且PAAD=A,所以 AE平面PAD,又PD平面PAD.所以 AEPD.(2):由()知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E、F分别为BC、PC的中点,所以E、F分别为BC、PC的中点,所以A(0,0,0),B(,-1,0),C(C,1,0),D(0,2,0),P(0,0,2),E(,0,0),F(),所以设平面AEF的一法向量为则 因此取因为 BDAC,BDPA,PAAC=A,所以BD平面AFC,故为平面AFC的一法向量.又=(-),所以 cosm, =因为二面角E-AF-C为锐角,以所求二面角的余弦值为7(福建理18题)如图,正三棱柱ABCA1B1C1的所有棱长都为2,D为CC1中点。()求证:AB1面A1BD;()求二面角AA1DB的大小;()求点C到平面A1BD的距离;【解】()取中点,连结为正三角形,在正三棱柱中,平面平面,平面取中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论