




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 引言数学源于实际,数学的发展主要依赖于生产实践。从数学应用的角度来处理数学、阐释数学、呈现数学,可以提高理论知识的可利用水平,增强理论知识可辨别性程度。数学概念多是由实际问题抽象而来的,大多数都有实际背景。尽管应用的广泛性是数学的一大特征,但常常被数学教材的严谨性和抽象性所掩盖,导致学生应用数学的意识薄弱,应用能力不强。数学的“语言”供世界各民族所共有,是迄今为止惟一的世界通用的语言,是一种科学的语言。科学数学化,社会数学化的过程,乃是数学语言的运用过程;科学成果也是用数学语言表述的,正如伽利略所说“自然界的伟大的书是用数学语言写成的”。从而端正并加深对数学的认识,激发我们应用数学的自觉性、主动性。图像问题:从“形”上看,二次函数的图像抛物线是人们常见曲线之一,抛物线型拱桥、隧道、美丽的喷泉、铅球的投掷等都与抛物线有关,即实际问题中涉及的是抛物线的形状,设法建立平面直角坐标系,利用待定系数法求出二次函数的解析式,再根据二次函数的知识解决实际问题。体现数形结合的思想。例1、一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈。已知篮圈中心到地面的距离为3.05米。(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?简解:(1)由于抛物线的顶点是 (0,3.5),故可设其解析式为y=ax2+3.5。又由于抛物线过(1.5,3.05),于是求得a=-0.2。抛物线的解析式为y=-0.2x2+3.5。(2)当x=-2.5时,y=2.25。球出手时,他距地面高度是2.25-1.8-0.25=0.20(米)。评析:运用投球时球的运动轨迹、弹道轨迹、跳水时人体的运动轨迹,抛物线形桥孔等设计的二次函数应用问题屡见不鲜。解这类问题一般分为以下四个步骤:(1)建立适当的直角坐标系(若题目中给出,不用重建);(2)根据给定的条件,找出抛物线上已知的点,并写出坐标;(3)利用已知点的坐标,求出抛物线的解析式。当已知三个点的坐标时,可用一般式y=ax2+bx+c求其解析式;当已知顶点坐标为(k,h)和另外一点的坐标时,可用顶点式y=a(x-k)2+h求其解析式;当已知抛物线与x轴的两个交点坐标分别为(x1,0)、(x2,0)时,可用双根式y=a(x-x1)(x-x2)求其解析式;(4)利用抛物线解析式求出与问题相关的点的坐标,从而使问题获解。例3、在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5) (1)求这个二次函数的解析式; (2)该男同学把铅球推出去多远?(精确到0.01米, )解:(1) 设二次函数的解析式为 ,顶点坐标为 (6,5) A(0,2)在抛物线上 (2) 当时, (不合题意,舍去) (米) 答:该同学把铅球抛出13.75米.例5、某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时每套600元,每月可卖出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可买出120套(两套服装的市场行情互不影响)。目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有如下关系: 转让数量(套) 120011001000900800700600500400300200100 价格(元/套) 240250 260 270 280290 300310 320330 340350 方案1:不转让A品牌服装,也不经销B品牌服装; 方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装; 方案3:部份转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装。解:经销商甲的进货成本是=480000(元) 若选方案1,则获利1200600-480000=240000(元) 若选方案2,得转让款1200240=288000元,可进购B品牌服装套,一年内刚好卖空可获利1440500-480000=240000(元)。 设转让A品牌服装x套,则转让价格是每套元,可进购B品牌服装套,全部售出B品牌服装后得款元,此时还剩A品牌服装(1200-x)套,全部售出A品牌服装后得款600(1200-x)元,共获利,故当x=600套时,可的最大利润330000元。 例5、某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由分析:(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,10),最高点的纵点标为.(2)求出抛物线的解析式后,要判断此次跳水会不会失误,就是要看当该运动员在距池边水平距离为米.时,该运动员是不是距水面高度为5米.解:(1)在给定的直角坐标系下,设最高点为A,入水点为B,抛物线的解析式为 .由题意,知O(0,0),B(2,10),且顶点A的纵坐标为. 解得或抛物线对称轴在轴右侧,又抛物线开口向下,a0,b0抛物线的解析式为(2)当运动员在空中距池边的水平距离为米时,即 时,此时运动员距水面的高为因此,此次跳水会失误.在上一问题中,我们结合身边的生活发现案例,建立数学模型,运用二次函数求最值的思想解之。得到了理论上的最优解。这正说明了数学正广泛地运用于经济生活。3、某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图所示,如图建立直角坐标系,水流喷出的高度与水平距离之间的关系式是.请回答下列问题:1.柱子OA的高度为多少米?2.喷出的水流距水平面的最大高度是多少米?3.若不计其它因素,水池的半径至少要多少米,才能喷出的水流不至于落在池外?练习3答案:(1)OA高度为米.(2)当时,即水流距水平面的最大高为米.(3)其中不合题意,答:水池的半径至少要2.5米,才能使喷出的水流不至于落在池外.例1 某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告。根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:x(十万元)012y11.51.8(1)求y与x的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的函数关系式;(3)如果投入的年广告费为1030万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?析解:(1)因为题中给出了y是x的二次函数关系,所以用待定系数法即可求出y与x的函数关系式为(2)由题意得S=10y(3-2)-x(3)由(2)及二次函数性质知,当1x2.5,即广告费在1025万元之间时,S随广告费的增大而增大。二、分析数量关系型题设结合实际情景给出了一定数与量的关系,要求在分析的基础上直接写出函数关系式,并进行应用。解答的关键是认真分析题意,正确写出数量关系式。例2 某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算)。设销售单价为x元,日均获利为y元。(1)求y关于x的二次函数关系式,并注明x的取值范围;(2)将(1)中所求出的二次函数配方成的形式,写出顶点坐标;在图2所示的坐标系中画出草图;观察图象,指出单价定为多少元时日均获得最多,是多少?(3)若将这种化工原料全部售出,比较日均获利最多和销售单价最高这两种销售方式,哪一种获总利较多,多多少?析解:(1)若销售单价为x元,则每千克降低(70-x)元,日均多售出2(70-x)千克,日均销售量为60+2(70-x)千克,每千克获利为(x-30)元。根据题意得(30x70)。(2)。顶点坐标为(65,1950),草图略,当单价定为65元时,日均获利最多,是1950元。(3)列式计算得,当日均获利最多时,可获总利195000元;当销售单价最高时,可获总利221500元。故当销售单价最高时获总利较多,且多获利221500-195000=26500元。三、建模型即要求自主构造二次函数,利用二次函数的图象、性质等解决实际问题。这类问题建模要求高,有一定难度。例3如图4,有一块铁皮,拱形边缘呈抛物线状,MN=4dm,抛物线顶点处到边MN的距离是4dm,要在铁皮上截下一矩形ABCD,使矩形顶点B、C落在边MN上,A、D落在抛物线上,问这样截下去的矩形铁皮的周长能否等于8dm?析解:由“抛物线”联想到二次函数。如图4,以MN所在的直线为x轴,点M为原点建立直角坐标系。设抛物线的顶点为P,则M(0,0),N(4,0),P(2,4)。用待定系数法求得抛物线的解析式为。设A点坐标为(x,y),则AD=BC=2x-4,AB=CD=y。于是。且x的取值范围是0x4(x2)。若l=8,则,即。解得。而0x4(x2)。故l的值不可能取8,即截下的矩形周长不可能等于8dm。注:本题还可在其它位置建立直角坐标系。例4.某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式;(2)度写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价x为何值时,年获利最大?最大值是多少?(3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?.解:(1)由题意,设y=kx+b,图象过点(70,5),(90,3),解得y=x+12.3分(2)由题意,得w=y(x-40)-z=y(x-40)-(10y+42.5)=(x+12)(x-10)-10(x+12)-42.5=-0.1x2+17x-642.5=(x-85)2+80.当85元时,年获利的最大值为80万元. 6分(3)令w=57.5,得-0.1x2+17x-642.5=57.2.整理,得x2-170x+7000=0.解得x1=70,x2=100.由图象可知,要使年获利不低于57.5万元,销售单价应在70元到100元之间.又因为销售单价越低,销售量越大,所以要使销售量最大,又使年获利不低于57.5万元,销售单价应定为70元.10分例1、如图,有一座抛物线型拱桥,在正常水位时水面AB的宽是20米,如果水位上升3米时,水面CD的宽为10米,(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)现有一辆载有救援物质的货车从甲地出发,要经过此桥开往乙地,已知甲地到此桥千米,(桥长忽略不计)货车以每小时40千米的速度开往乙地,当行驶到1小时时,忽然接到紧急通知,前方连降大雨,造成水位以每小时米的速度持续上涨,(货车接到通知时水位在CD处),当水位达到桥拱最高点O时,禁止车辆通行;试问:汽车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过多少千米?(2008年南宁市)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-所示;种植花卉的利润与投资量成二次函数关系,如图12-所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?解:(1)设=,由图12-所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设=,由图12-所示,函数=的图像过(2,2),所以, 故利润关于投资量的函数关系式是;(2)设这位专业户投入种植花卉万元(),则投入种植树木()万元,他获得的利润是万元,根据题意,得=+=当时,的最小值是14; 他至少获得14万元的利润因为,所以在对称轴的右侧,随的增大而增大所以,当时,的最大值为3216(08兰州)一座拱桥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- led工程安装合同范本
- 蒲庙租房合同范本
- 涉外投资经营合同范本
- 建筑装饰合同范本
- 小型叉车租赁合同范本
- 红酒销售供货合同范本
- 出土方合同范本
- 社区实验基础知识培训课件
- 小区外管网合同范本
- 生产工人的合同范本
- 2023年北京邮电大学招聘笔试真题
- xx公路与天然气管道交叉方案安全专项评价报告
- 药店员工培训与考核制度
- 检验科技术人员基本技能考核表2014
- 《教育心理学(第3版)》全套教学课件
- 鹧鸪山隧道瓦斯地段专项施工方案
- 病原微生物实验活动风险评估表
- 水果购销合同范本高清
- 中国舷外机(船外机)行业现状及趋势
- JT-T-496-2018公路地下通信管道高密度聚乙烯硅芯塑料管
- 伯克利-利特温(组织绩效与变革因果关系)组织诊断+模型案例、工具解析
评论
0/150
提交评论