调节阀气蚀现象的分析及改进措施.docx_第1页
调节阀气蚀现象的分析及改进措施.docx_第2页
调节阀气蚀现象的分析及改进措施.docx_第3页
调节阀气蚀现象的分析及改进措施.docx_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

调节阀气蚀现象的分析及改进措施发布时间:2010-2-26 编辑:service 来源:互联网 直接进论坛 1、概述 调节阀作为自动控制调节系统中的执行部件,在现代工业生产中得到广泛应用,其控制及通讯方式随着计算机及总线新技术的应用而发生了根本性的转变,大大提高了控制的准确度及可靠性。但在高温高压工况使用过程中,管道流体往往因设备结构设计、安装或工艺参数设计不当等原因而产生气蚀,对调节阀内件造成严重的损伤,同时引起整个系统的振动及噪声,严重影响调节阀的使用寿命及控制系统的精确性,给工业生产带来很大的隐患。 2、气蚀机理 气蚀是一种水力流动现象,气蚀的直接原因是管道流体因阻力的突变产生了闪蒸及空化。在工艺系统中调节阀属节流部件,起变阻力元件的作用,其核心是一个可移动的阀瓣与不动的阀座之间形成的节流窗口,改变阀瓣位置就可改变调节阀的阻力特性,进而改变整个工艺系统的阻力特性。在高压差(p2.5MPa)时,调节阀的调节过程就是阻力的突变过程,此过程极易产生气蚀。为便于分析,将调节阀的节流过程模拟为节流孔调节式。 可以看出进口压力为p1,流速为V1的流体流经节流孔时,流速突然急剧增加,根据流体能量守恒定律,流速增加静压力便骤然下降。当出口压力p2达到或者低于该流体所在情况下的饱和蒸汽压pv时,部分液体就汽化为气体,形成气液两相共存的现象,此既为闪蒸的形成。如果产生闪蒸之后,p2不是保持在饱和蒸汽压之下,在离开节流孔后随着流道截面的增大流速相应减小,阀后压力急骤上升。升高的压力压缩闪蒸产生的气泡,气泡由圆形变为椭圆形,随后达到临界尺寸的气泡上游表面开始变平,然后突然爆裂。所有的能量集中在破裂点上,产生巨大的冲击力,其强度可达几千牛顿。此冲击力冲撞在阀瓣、阀座和阀体上,使其表面产生塑性变形,形成一个个粗糙的蜂窝渣孔,这便是气蚀形成的过程。气蚀现象不仅仅存在于高压差的调节阀内部,在工业生产的很多领域都存在此现象。3、防止气蚀的措施 3.1、类型选择 从分析可以看出,产生气蚀是因为发生了空化,而发生空化的原因是节流引起了压力的突变,因此应避免空化的产生。而产生空化的临界压差即阻塞流形成的压差pT为 pT=FL2(p1-pvc) 式中FL压力恢复系数 在工艺条件允许的情况下尽量选用ppT,可以将两个调节阀串联起来使用,这样每个调节阀的压差p都小于pT,空化便不会产生。如果阀的压差p小于2.5MPa,一般不会产生气蚀,即使有气蚀的产生也不会对阀门造成严重的损坏。另外,选用角形调节阀也可减弱闪蒸破坏力。因为角形阀中的介质直接流向阀体内部下游管道的中心,而不是直接冲击体壁,所以减少了冲击阀体体壁的饱和气泡数量和次数,相应的减少了气蚀的发生。3.2、材料选择 从气蚀的结果分析,材料硬度不能抵抗气泡破裂而释放的冲击力是造成损伤的主要原因之一,但能够长时间抵御严重空化作用的材料很少,价格昂贵,国内外常用的材料为司太莱合金(含钴、铬、钨的合金,45HRC)、硬化工具钢(60HRC)和钨碳钢(70HRC)等。但硬度高的材料加工成型不方便,极易脆裂,加工成本大,一般常用的方法是在不锈钢基体上进行堆焊或喷焊司太莱合金(图2),在流体气蚀冲刷处形成硬化表面。当硬化表面出现损伤后,可以进行二次堆焊或喷焊,这样既能增加设备的使用寿命,又减少了装置的维修费用。3.3、结构选择 分析结果证明,空化是因为压力的突变所引起,而系统要求的压降又不能降低,所以采用将一次大的压力突变分解为若干次的多级阀瓣结构(图3),这种结构的阀瓣可以把总压差分成几个小压差,逐级降压,使每一级都不超过临界压差。或设计成特殊结构的阀瓣和阀座,如迷宫式阀瓣及叠片式阀瓣等,都可以使高速流体在通过阀瓣和阀座时,每一点的压力都高于在该温度下的饱和蒸汽压,或使液体本身相互冲撞,在通道间导致高度紊流,使液体的动能由于相互摩擦而变为热能,可减少气泡的形成。不同结构形式的阀门有其不同的气蚀系数 式中H1阀后(出口)压力,MPa H2大气压与其温度相对应的饱和蒸汽压力之差,MPap阀门前后的压差,MPa各种阀门由于构造不同,允许的气蚀系数也不同,如计算的气蚀系数大于容许气蚀系数,则不会发生气蚀。以蝶阀容许气蚀系数为215为例进行说明。当2.5时,不发生气蚀。当2.51.5时,发生轻微气蚀。当1.5时,产生振动。当0.5时,如继续使用,则会损伤阀门和下游配管。从计算中可以看出,产生气蚀与阀门出口压力H1有关,加大H1会使情况改变。其改进方法很多,如把阀门安装在管道较低点,或在阀门后管道上装孔板增加阻力,也可将阀门出口直接接蓄水池,使气泡炸裂的空间增大,气蚀减小。4、结语 调节阀的气蚀现象受到阀门用材料、流体、力学、结构和介质等多种因素的影响,通过合理的选择,精确的计算,以及阀门新技术和新结构的应用,气蚀现象会在生产中得到更好的解决。当液体经过部分开启的阀门时,在速度增大区域和在关闭之后的静压降低,可能会达到液体的气化压力。这时,在低压区的液体就开始气化,并产生充气空穴,形成小的气泡并吸附液体中的杂质。当气泡被液流再次带到静压较高的区域时,气泡就突然破裂或爆破。这一过程就叫气蚀。 当破裂的气泡的液体粒子互相冲撞时,在局部地区产生瞬间高压。如果气泡爆破发生在阀体周介或管壁,则压力能胜过这些部位的抗张强度,在表面上快速交变应力及周介表面毛细孔中受到的压力冲击最后会导致局部的疲劳损伤,使周介表面粗糙,最终造成十分大的气穴。 对某种特殊类型的阀门其气蚀特性是很典型的。因此,这种阀门通常规定有表面气蚀程度和发生气蚀倾向的气蚀指数。这一指数在文献中以不同方式提出。 以水为介质的蝶阀、闸阀、截止阀和球阀的起始气蚀曲线3。这些曲线是由西奈城市污水排放局编制并根据实验室观察和公布的数据得到。由于试验结果受温度、进入的空气、杂质、模型误差和观察者的判读误差的影响,该曲线仅供参考。 如果使压降分段发生就可减少气蚀。在紧挨阀门的出121处注入压缩空气,由于提高了周围压力也可减少气泡的形成。但缺点是输入的空气会影响出口端仪表的读数。使紧接阀座出口端的通道急剧扩大可防止阀体壁和管壁遭受气蚀损坏,对用于水厂中的针形阀,其扩大腔室的直径为管径的15倍,包括出口退拔在内的通道长度为管径的8倍时,可避免遭受气蚀。工程机械液压缸气蚀的预防液压缸的质量好坏对工程机械的使用效能有着重要的影响。我们在对工程机械的液压缸进行维修时,经常可以看到液压缸内壁、活塞或活塞杆表面有一些蜂窝状的孔穴,这都是气蚀所致。液压缸发生气蚀的危害是相当大的,它会导致配合表面变黑,甚至出现支承环、密封圈烧焦的现象,从而造成液压缸产生内泄。当气蚀与其他型式的腐蚀共同作用时,将会几倍甚至几十倍地加速液压缸主要零件的腐蚀速度,从而严重影响工程机械的正常使用。因此,对液压缸的气蚀作针对性的预防,是十分必要的。 1产生气蚀的主要原因气蚀的实质分析气蚀的产生,主要是由于液压缸在工作过程中在活塞和导向套之间的油液中混入了一定量的空气。随着压力的逐渐升高,油液当中的气体会变成气泡,当压力升高到某一极限值时,这些气泡在高压的作用下就会发生破裂,从而将高温、高压的气体迅速作用到零件的表面上,导致液压缸产生气蚀,造成零件的腐蚀性损坏。液压油质量不合格导致气蚀保证液压油的质量,是防止产生气蚀的一个重要因素。如果油液的抗泡沫性差,就很容易产生泡沫,从而导致气蚀的发生。其次,油液压力的变化频率过快、过高,也将直接造成气泡的形成,加速气泡的破裂速度。试验证明,压力变化频率高的部位出现气蚀的速度就会加快。如液压缸进、回油口处等,由于压力变化的频率相对较高,气蚀的程度也相对高于其他部位。除此之外,油液过热也会增加气蚀发生的几率。制造及维修不当导致气蚀由于在装配或维修时未注意使液压系统充分排气,从而导致系统中存在气体,在高温、高压的作用下即可产生气蚀。冷却液质量有问题导致气蚀当冷却液中含有腐蚀介质,如各种酸根离子、氧化剂等,则易发生化学、电化学腐蚀等,在它们的联合作用下,也会加快气蚀的速度;若冷却系统维护得好,可预防气蚀的发生。例如,冷却系统散热器的压力盖,如果维护得好,就可以使散热器的冷却液压力始终高于蒸气压力,从而防止气蚀的产生。再如,冷却系统的节温器;一个性能良好的节温器可以使冷却液保持在合适的温度范围内,就能降低气泡破裂时所释放的能量。2预防气蚀的措施虽然气蚀的产生原因是多方面的,但只要采取必要的措施进行积极地预防,气蚀现象还是可以避免的。下面针对气蚀产生的原因,谈谈应采取的预防措施。严把液压油选用关严格按照用油标准选用液压油。选用质量好的液压油,可以有效地防止液压系统在工作过程中出现气泡。在选用油液时,应根据不同地区的最低气温进行选择,并按油尺标准加注液压油,同时还应保持液压系统的清洁(加注液压油时,应防止将水分和其他杂质带入),经常检查液压油的油质、油位和油色,如果发现液压油中出现水泡、泡沫,或油液变成乳白色时,应认真地查找油液中空气的来源,并及时加以消除。防止油温过高,减少液压冲击合理设计散热系统、防止油温过高,是保持液压油油温正常的关键。如果出现异常,应查找原因,及时排除。在操纵液压操纵杆和分配阀时,要力求平稳,不宜过快、过猛,也不宜频繁地加大发动机油门,尽量减轻液压油对液压元件的冲击。同时,还应及时地维护冷却系统,使冷却系统的温度保持在合适的范围内,以降低气泡破裂时释放的能量。在不影响冷却液正常循环的同时,可以适当地添加一定量地防腐添加剂来抑制锈蚀。保持各液压元件结合面的正常间隙在制造或修理液压缸的主要零件(如缸体、活塞杆等)时,应按照装配尺寸的公差下限值进行装配,实践证明,这样可以很好地减少气蚀现象的发生。如果液压元件已经出现气蚀现象,则只能采用金相砂纸抛光技术除去气蚀的麻点和表面积炭,切不可用一般的细砂纸进行打磨处理。维修时要注意排气液压缸在维修后,应使液压系统平稳地运转一定的时间,以使液压系统中的液压油得到充分循环;必要时,可将液压缸进油管(或回油管)拆开,使液压油溢出,以达到单只液压缸排气的效果。离心泵最易发生气蚀的部位有: a.叶轮曲率最大的前盖板处,靠近叶片进口边缘的低压侧; b.压出室中蜗壳隔舌和导叶的靠近进口边缘低压侧; c.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间隙以及叶梢的低压侧; d.多级泵中第一级叶轮。 提高离心泵抗气蚀性能有下列两种措施: a.提高离心泵本身抗气蚀性能的措施 (1)改进泵的吸入口至叶轮附近的结构设计。增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。 (2)采用前置诱导轮,使液流在前置诱导轮中提前作功,以提高液流压力。 (3)采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。 (4)设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论