免费预览已结束,剩余31页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2014年六年级数学思维训练:立体几何一、兴趣篇1一个长方体的长、宽、高分别为3厘米、2厘米、1厘米若它的棱长总和等于另一个正方体的棱长总和,则长方体与正方体的表面积之比是多少?长方体体积比正方体体积少多少立方厘米?2如图,将长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长为2厘米的正方形,然后沿虚线折叠成长方体容器这个容器的体积是多少立方厘米?如果四角去掉边长为3厘米的正方形呢?3用棱长是1厘米的小立方体拼成如图所示的立体图形,这个图形的表面积是多少平方厘米?4(1)如图1,将一个棱长为6的正方体从某个角切掉一个长、宽、高分别为4、3、5的长方体,剩余部分的表面积是多少? (2)如图2,将一个棱长为5的正方体,从左上方切去一个长、宽、高分别为5、4、3的长方体,它的表面积减少了百分之几?5(2013北京模拟)如图是一个边长为2厘米的正方体在正方体的上面的正中向下挖一个边长为1厘米的正方体小洞;接着在小洞的底面正中再向下挖一个边长为厘米的小洞;第三个小洞的挖法与前两个相同,边长为厘米那么最后得到的立体图形的表面积是多少平方厘米?6(2012北京模拟)(1)如图,将4块棱长为1的正方体木块排成一排,拼成一个长方体那么拼合后这个长方体的表面积,比原来4个正方体的表面积之和少了多少?(2)一个正方体形状的木块,棱长为1,如图所示,将其切成两个长方体,这两部分的表面积总和是多少?如果在此基础上再切4刀,将其切成大大小小共18块长方体这18块长方体表面积总和又是多少?7这里有一个圆柱和一个圆锥(如图),它们的高和底面直径都标在图上,单位是厘米请回答:圆锥体积与圆柱体积的比是多少?8如图,一块三层蛋糕,由三个高都为1分米,底面半径分别为1.5分米、1分米和0.5分米的圆柱体组成请问:(1)这个蛋糕的表面积是多少平方分米?(取3.14)(2)如果沿经过中轴线AB的平面切一刀,将该蛋糕分成完全相同的两部分,那表面积之和又是多少?9有大、中、小三个立方体水池,它们的内部棱长分别是6米、3米、2米,三个池子都装了半池水现将两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了6厘米和4厘米如果将这两堆碎石都沉没在大水池的水里,大水池的水面会升高多少厘米?(结果精确到小数点后两位)10有一个高24厘米,底面半径为10厘米的圆柱形容器,里面装了一半水,现有一根长30厘米,底面半径为2厘米的圆柱体木棒将木棒竖直放入容器中,使棒的底面与容器的底面接触,这时水面升高了多少厘米?二、拓展篇11将表面积分别为54、96和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积12(2012深圳校级模拟)一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90立方厘米;如果高增加4厘米,则体积增加96立方厘米求原长方体的表面积13如图,有30个棱长为1米的正方体堆成一个四层的立体图形请问:这个立体图形的表面积等于多少?14如图1,将一个棱长为10的正方体从顶点A切掉一个棱长为4的正方体,得到如图2的立体图形,这个立体图形的表面积是多少?如果再从顶点B切掉一个棱长为6的正方体,那么剩下的立体图形的表面积又是多少?15一个正方体被切成24个大小形状一模一样的小长方体(如图),这些小长方体的表面积之和为162平方厘米请问:原正方体的体积是多少?16如图是一个棱长为4厘米的正方体,分别在前、后、左、右、上、下各面的中心位置挖去一个棱长1厘米的小正方体,做成一种玩具该玩具的表面积是多少平方厘米?如果把这些洞都打穿,表面积又变成了多少?17一个无盖木盒从外面量时,其长、宽、高分别为10厘米、8厘米、5厘米,已知木板厚1厘米,那么做一个木盒,需要这样的木板多少平方厘米?这个木盒的容积又是多少?18有一根长为20厘米,直径为6厘米的圆钢,在它的两端各钻一个4厘米深,底面直径也为6厘米的圆锥形的孔,做成一个零件(如图)这个零件的体积为多少立方厘米?(取3.14)19现有一块长、宽、高分别为10厘米、8厘米、6厘米的长方体木块,把它切成体积尽可能大且底面在长方体表面上的圆柱体木块,这个圆柱体木块的体积为多少?(取3)20张大爷去年用长2米宽1米的长方形苇席围成容积最大的圆柱形粮囤,今年改用长3米宽2米的长方形苇席围成容积最大的圆柱形粮囤今年粮囤的容积是去年粮囤容积的多少倍?21左边正方形的边长为4,右边正方形对角线长度为6如果按照图中的方式旋转,那么得到的两个旋转体的体积之比是多少?22如图一个底面长30分米,宽10分米,高12分米的长方体水池,存有四分之三池水,请问:(1)将一个高1 1分米,体积330立方分米的圆柱放入池中,水面的高度变为多少分米?(2)如果再放人一个同样的圆柱,水面高度又变成了多少分米?(3)如果再放人一个同样的圆柱,水面高度又变成了多少分米?三、超越篇23有一个棱长为20的大立方体,在它的每个角上按如图的方式各做一个小立方体,于是得到8个小立方体在这些立方体中,上面4个的棱长为12,下面4个的棱长为13请问:所有这8个小立方体公共部分的体积是多少?24地上有一堆小立方体,从上面看时如图1,从前面看时如图2,从左边看时如图3这一堆立方体一共有几个?如果每个小立方体的棱长为1厘米,那么这堆立方体所堆成的立体图形表面积为多少平方厘米?25(1)已知一个圆柱的底面直径为6厘米,高为4厘米求它的体积和表面积;(答案用兀表示)(2)用一个半径为25厘米,圆心角为345.6的扇形围成一个圆锥,这个圆锥的体积是多少?如果圆心角是216呢?(答案用丌表示)26将图1、图2中的平面图形分别折叠成一个四棱锥和三棱柱,这两个立体图形的体积分别是多少?(图1正中央是一个面积为18平方厘米的正方形,每边上分别有一个腰长为5厘米的等腰三角形;图2中的图形由三个长方形和两个直角三角形组成)27一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,如图圆柱体的底面直径和高都是12厘米,其内有一些水,正放时水面离容器顶11厘米,倒放时,水面离顶部5厘米请问:这个容器的容积是多少立方厘米?(兀取3.14)28有一个长方体水池,底面为边长60厘米的正方形,里面插着一根长1米的木桩,木桩的底面是一个边长15厘米的正方形,木桩有一部分浸在水中,一部分露出水面现在将木桩提起来24厘米(仍有部分浸在水里),那么露出水面的木桩浸湿部分面积为多少平方厘米?29右图是个有底无盖的容器的平面展开图,其中是边长为18厘米的正方形,是同样大的等腰直角三角形,是同样大的等边三角形那么,这个容器的容积是 毫升30有一个三棱柱和一个正方体,三棱柱的底面是一个等边三角形,边长恰好等于正方体的面对角线长度,三棱柱的高恰好等于正方体的体对角线长度,如果正方体的棱长为6,那么三棱柱的体积为多少?2014年六年级数学思维训练:立体几何参考答案与试题解析一、兴趣篇1一个长方体的长、宽、高分别为3厘米、2厘米、1厘米若它的棱长总和等于另一个正方体的棱长总和,则长方体与正方体的表面积之比是多少?长方体体积比正方体体积少多少立方厘米?【分析】首先根据长方体的棱长总和=(长+宽+高)4,求出棱长总和,用棱长总和除以12求出正方体的棱长,再根据长方体的表面积公式:s=(ab+ah+bh)2,正方体的表面积公式:s=6a2,长方体的体积公式:v=abh,正方体的体积公式:v=a3,把数据分别代入公式解答【解答】解:(3+2+1)412=6412=2412=2(厘米),(32+31+21)2:(226)=112:24=22:24=11:12;222321=86=2(立方厘米),答:长方体与正方体的表面积之比是11:12,长方体体积比正方体体积少2立方厘米2如图,将长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长为2厘米的正方形,然后沿虚线折叠成长方体容器这个容器的体积是多少立方厘米?如果四角去掉边长为3厘米的正方形呢?【分析】先根据题意计算出折成的长方体的长,宽,高,即长方体的长=原长方形的长2个正方形的边长,长方体的宽=原长方形的宽2个正方形的边长,长方体的高=正方形的边长,再根据长方体的容积=长宽高,计算出容积【解答】解:长方体的长:1322=9(厘米)长方体的宽:922=5(厘米)容积为:952=90(立方厘米)答:这个容器的容积为90立方厘米如果四角去掉边长为3厘米的正方形:长方体的长:1333=7(厘米)长方体的宽:933=3(厘米)容积为:733=63(立方厘米)答:这个容器的容积为63立方厘米3用棱长是1厘米的小立方体拼成如图所示的立体图形,这个图形的表面积是多少平方厘米?【分析】可以从上下左右前后观察各有几个正方形的面,然后用一个正方形的面的面积乘它的个数,即是这个图形的表面积,据此解答【解答】解:上、下共:9+9=18(个),左、右共:7+7=14(个),前、后共:7+7=14(个),表面积:11(18+14+14),=46(平方厘米);答:这个图形的表面积是46平方厘米4(1)如图1,将一个棱长为6的正方体从某个角切掉一个长、宽、高分别为4、3、5的长方体,剩余部分的表面积是多少? (2)如图2,将一个棱长为5的正方体,从左上方切去一个长、宽、高分别为5、4、3的长方体,它的表面积减少了百分之几?【分析】图1由图意可知,减少的面积的和新增的面的面积相等,所以剩余部分的表面积就是原来长方体的表面积图2由图意可知,减少的是长是4,宽是3的两个长方形的面积,用减少的面积除以正方体的表面积即可【解答】解:(1)666=216答:剩余部分的表面积是216(2)243(556)=24150=16%答:它的表面积减少了16%5(2013北京模拟)如图是一个边长为2厘米的正方体在正方体的上面的正中向下挖一个边长为1厘米的正方体小洞;接着在小洞的底面正中再向下挖一个边长为厘米的小洞;第三个小洞的挖法与前两个相同,边长为厘米那么最后得到的立体图形的表面积是多少平方厘米?【分析】立体图形的好处就是可以直观视觉,虽然图形被挖去,但6个面看过去都还是面积不变的,特别是从上往下看是,3个正方体的下底面剩下的面积和等于原来的面积,这样就只增加了3个小正方体的各自的侧面;计算出原表面积再加上增加的3个小正方体的各自侧面的面积就是最后得到的立体图形的表面积【解答】解:原正方体的表面积是:226=24(平方厘米),增加的面积:114+()4+()4,=4+4+4,=4+1+,=5(平方厘米),总表面积为:24+5=29(平方厘米)答:最后得到的立体图形的表面积是29平方厘米6(2012北京模拟)(1)如图,将4块棱长为1的正方体木块排成一排,拼成一个长方体那么拼合后这个长方体的表面积,比原来4个正方体的表面积之和少了多少?(2)一个正方体形状的木块,棱长为1,如图所示,将其切成两个长方体,这两部分的表面积总和是多少?如果在此基础上再切4刀,将其切成大大小小共18块长方体这18块长方体表面积总和又是多少?【分析】(1)观察图形可知,拼组后的长方体的表面积比原来减少了6个小正方体的面的面积,由此即可解答;(2)每切一刀,就增加2个正方体的面,所以这两部分的表面积之和就是8个正方体的面的面积之和;在此基础上再切4刀后,表面积比原来又增加了8个小正方体的面,由此即可解答【解答】解:(1)611=6,答:拼组后表面积减少了6(2)切一刀,得到的两个长方体的表面积之和是:11(6+2)=8;再切4刀,则表面积之和是:11(6+10)=16;答:切一刀后,表面积之和是8,再切4刀后,表面积之和是167这里有一个圆柱和一个圆锥(如图),它们的高和底面直径都标在图上,单位是厘米请回答:圆锥体积与圆柱体积的比是多少?【分析】利用V=sh求得圆锥的体积,V=sh求得圆柱的体积,依此可得圆锥体积与圆柱体积的比【解答】解:圆锥体积:圆柱体积=(3.14224):(3.14428)=(224):(428)=1:24;答:圆锥体积与圆柱体积的比是1:248如图,一块三层蛋糕,由三个高都为1分米,底面半径分别为1.5分米、1分米和0.5分米的圆柱体组成请问:(1)这个蛋糕的表面积是多少平方分米?(取3.14)(2)如果沿经过中轴线AB的平面切一刀,将该蛋糕分成完全相同的两部分,那表面积之和又是多少?【分析】由题意可知:这个物体的表面积是大圆柱的表面积加上中、小圆柱的侧面积,根据公式计算即可如果沿经过中轴线AB的平面切一刀,将该蛋糕分成完全相同的两部分,那表面积之和圆柱的表面积加上3个长方形的面积乘以2即可【解答】解(1)大圆柱的表面积:3.141.522+23.141.51,=14.13+9.42,=23.55(平方米),中圆柱侧面积:23.1411=6.28(平方米),小圆柱侧面积:23.140.51=3.14(平方米),这个物体的表面积:23.55+6.28+3.14=32.97(平方米);答:这个物体的表面积是32.97平方米(2)(10.5+11+11.5)2+32.97=6+32.97=38.97(平方分米)答:将该蛋糕分成完全相同的两部分,那表面积之和是38.97平方分米9有大、中、小三个立方体水池,它们的内部棱长分别是6米、3米、2米,三个池子都装了半池水现将两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了6厘米和4厘米如果将这两堆碎石都沉没在大水池的水里,大水池的水面会升高多少厘米?(结果精确到小数点后两位)【分析】根据题意,因为把碎石沉没在水中,水面升高所增加的体积,就等于所沉入的碎石的体积,所以应先求出两块碎石的体积沉入在中水池的碎石的体积,即330.06=0.54(米3),而沉入小水池中的碎石的体积是:220.04=0.16(米3);然后求出两块碎石的体积和,再根据大水池的底面积,求出大水池的水面升高的高度,解决问题【解答】解:6厘米=0.06米4厘米=0.04米330.06=0.54(米3)220.04=0.16(米3)0.54+0.16=0.7(米3)大水池的底面积是:66=36(米3)大水池的水面升高了:0.736=(米)米1.94(厘米)答:大水池的水面大于会升高1.94厘米10有一个高24厘米,底面半径为10厘米的圆柱形容器,里面装了一半水,现有一根长30厘米,底面半径为2厘米的圆柱体木棒将木棒竖直放入容器中,使棒的底面与容器的底面接触,这时水面升高了多少厘米?【分析】放入圆柱体木棒前后的水的体积不变,根据原来水深242=12厘米,可以先求得水的体积,那么放入圆柱体木棒后,容器的底面积变小了,由此可以求得此时水的深度,进一步即可求解【解答】解:3.14102(242)(3.141023.1422)=(3.141200)(3.1496)=120096=12.5(厘米)12.5242=12.512=0.5(厘米)答:这时水面升高了0.5厘米二、拓展篇11将表面积分别为54、96和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积【分析】因为正方体的每一个面的面积相等,所以这三个正方体的每一个面面积是9、16、25平方厘米故三个正方体的棱长分别是3、4、5厘米则大正方体的体积只需将三个正方体的体积相加即可【解答】解:546=9(平方厘米),因为33=9,所以这个正方体的棱长是3厘米,966=16(平方厘米),因为44=16,所以这个正方体的棱长是4厘米,1506=25(平方厘米),因为55=25,所以这个正方体的棱长是5厘米,33+43+53,=27+64+125,=216(立方厘米),答:这个大正方体的体积是216立方厘米12(2012深圳校级模拟)一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90立方厘米;如果高增加4厘米,则体积增加96立方厘米求原长方体的表面积【分析】由题意,长增加2厘米,体积增加40立方厘米,可知宽高2=40立方厘米,则宽高=20平方厘米同理可知长高=30平方厘米,长宽=24平方厘米,根据长方体的表面积=(长宽+长高+宽高)2列式解答【解答】解:长增加2厘米,体积增加40立方厘米,可知宽高2=40立方厘米,则宽高=20平方厘米同理可知长高=903=30平方厘米,长宽=964=24平方厘米,(长宽+长高+宽高)2=(24+30+20)2,=742,=148(平方厘米);答:原长方体的表面积是148平方厘米13如图,有30个棱长为1米的正方体堆成一个四层的立体图形请问:这个立体图形的表面积等于多少?【分析】这个几何体的表面积就是露出小正方体的面的面积之和,从上面看有16个面;从下面看有16个面;从前面看有10个面;从后面看有10个面;从左面看有10个面;从右面看有10个面由此即可解决问题【解答】解:图中几何体露出的面有:104+162=72(个)所以这个几何体的表面积是:1172=72(平方米)答:这个立体图形的表面积等于72平方米14如图1,将一个棱长为10的正方体从顶点A切掉一个棱长为4的正方体,得到如图2的立体图形,这个立体图形的表面积是多少?如果再从顶点B切掉一个棱长为6的正方体,那么剩下的立体图形的表面积又是多少?【分析】将原正方体切去一个小正方体后,减少的表面积正好被新增加的表面积所补充,因此新的立体图形的表面积就等于原正方体的表面积,根据正方体的表面积公式即可求解,如果再从顶点B切掉一个棱长为6的正方体,那么剩下的立体图形的表面积是原正方体的表面积边长是4的两个正方形的面积【解答】解:10106=600答:这个立体图形的表面积是600如果再从顶点B切掉一个棱长为6的正方体,剩下的立体图形的表面积为:10106442=60032=568答:剩下的立体图形的表面积是56815一个正方体被切成24个大小形状一模一样的小长方体(如图),这些小长方体的表面积之和为162平方厘米请问:原正方体的体积是多少?【分析】由题意,一个正方体被切成24个大小形状一模一样的小长方体,则需要切6次,每次会增加两个答正方体的面,所以共增加12个大正方体的面,又知这些小长方体的表面积之和为162平方厘米,即原来大正方体的6+12=18个面的面积是162平方厘米,由此可求得一个面的面积,进而得到大正方体的棱长,再根据正方体的体积公式解答即可【解答】解:一个正方体被切成24个大小形状一模一样的小长方体,则需要切6次,共增加12个大正方体的面,一个面的面积:162(12+6)=9(平方厘米),因为33=9,所以可知大正方体的棱长是3厘米,大正方体的体积:333=27(立方厘米),答:原正方体的体积是27立方厘米16如图是一个棱长为4厘米的正方体,分别在前、后、左、右、上、下各面的中心位置挖去一个棱长1厘米的小正方体,做成一种玩具该玩具的表面积是多少平方厘米?如果把这些洞都打穿,表面积又变成了多少?【分析】这个玩具的表面积是大正方体的面积,加上6个边长为1厘米的小正方体的4个侧面的面积,如果把这些洞都打穿,表面积增加4个边长4厘米的小正方体的4个侧面的面积,据此解答即可【解答】解:玩具的表面积:446+1164=96+24=120(平方厘米)如果把这些洞都打穿,表面积:4466+1.5146=90+36=126(平方厘米)答:它的表面积是120平方厘米如果把这些洞都打穿,表面积变成了126平方厘米17一个无盖木盒从外面量时,其长、宽、高分别为10厘米、8厘米、5厘米,已知木板厚1厘米,那么做一个木盒,需要这样的木板多少平方厘米?这个木盒的容积又是多少?【分析】如下图:假设用长10厘米,宽8厘米,厚1厘米的木板作底面,那么4个侧面的木板的高就是(51)厘米,如果前后面用长10厘米,宽4厘米的木板,那么左右面的木板长是(811)厘米,左右面木板的宽也是4厘米然后根据长方体表面积的计算方法,求这5个面的总面积即可木盒里面的长是(1011)厘米,宽是(811)厘米,高是(51)厘米,再根据长方体的容积(体积)公式解答【解答】解:如图:根据分析:4个侧面的木板的宽是:51=4(厘米)108+1042+(811)42=80+80+642=160+48=208(平方厘米)(1011)(811)(51)=864=192(立方厘米)答:做这个木盒至少需用1厘米厚的木板208平方厘米这个木盒的容积是192立方厘米18有一根长为20厘米,直径为6厘米的圆钢,在它的两端各钻一个4厘米深,底面直径也为6厘米的圆锥形的孔,做成一个零件(如图)这个零件的体积为多少立方厘米?(取3.14)【分析】根据题意可知:这个零件的体积等于圆柱的体积减去两个圆锥的体积,根据圆柱的体积公式:v=sh,圆锥的体积公式:v=,把数据分别代入公式解答即可【解答】解:3.14(62)242=565.275.36=489.84(立方厘米),答:这个零件的体积为489.84立方厘米19现有一块长、宽、高分别为10厘米、8厘米、6厘米的长方体木块,把它切成体积尽可能大且底面在长方体表面上的圆柱体木块,这个圆柱体木块的体积为多少?(取3)【分析】削出最大的圆柱的方法有三种情况:(1)以8厘米为底面直径,6厘米为高;(2)以6厘米为底面直径,8厘米为高;(3)以6厘米为底面直径,10厘米为高,由此利用圆柱的体积公式分别计算出它们的体积即可解答【解答】解:(1)以8厘米为底面直径,6厘米为高,3(82)26=3166=288(立方厘米);(2)以6厘米为底面直径,8厘米为高;3(62)28=398=216(立方厘米);(3)以6厘米为底面直径,10厘米为高,3(62)210=3910=270(立方厘米);答:这个圆柱最大的体积是288立方厘米20张大爷去年用长2米宽1米的长方形苇席围成容积最大的圆柱形粮囤,今年改用长3米宽2米的长方形苇席围成容积最大的圆柱形粮囤今年粮囤的容积是去年粮囤容积的多少倍?【分析】依据经验可得:用长方形的长作底面周长,宽作高,围成的圆柱的容积最大,据此利用圆柱的体积公式即可得解【解答】解:21=2=4.5倍;答:今年粮囤的容积是去年粮囤容积的4.5倍21左边正方形的边长为4,右边正方形对角线长度为6如果按照图中的方式旋转,那么得到的两个旋转体的体积之比是多少?【分析】左边正方形旋转后交得到一个底面半径为,高为4的圆柱,根据圆柱的体积公式V=r2h即可求出这个圆柱的体积; 右边正方形旋后可得到两个底面半径为,高也为且底面重合的圆锥,根据圆锥的体积公式V=r2h即可求出这两个圆柱的体积;再根据比的意义求出两个旋转体的体积之比即可(要化成最简整数比)【解答】解:3.14()24=3.1444=50.24,3.14()22=3.14932=56.52,50.24:56.52=8:9答:两个旋转体的体积之比是8:922如图一个底面长30分米,宽10分米,高12分米的长方体水池,存有四分之三池水,请问:(1)将一个高1 1分米,体积330立方分米的圆柱放入池中,水面的高度变为多少分米?(2)如果再放人一个同样的圆柱,水面高度又变成了多少分米?(3)如果再放人一个同样的圆柱,水面高度又变成了多少分米?【分析】(1)由题意知,原来容器中的水可以看成是长30分米、宽10分米、高为12=9分米的长方体,现将一个高11分米,体积330立方分米的圆柱放入池中,水面没有淹没,求出圆柱的底面积即33011=30(平方分米)再用309求出淹没部分圆柱的体积除以长方体的底面积即是水升高的高度,用水升高的高度加上9分米,(2、3)同(1)解答即可【解答】解:(1)3301112=309=270(立方分米)270(3010)=270300=0.9(分米)9+0.9=9.9(分米)答:水面的高度变为9.9分米(2)330119.9=309.9=297(立方分米)297(3010)=0.99(分米)9.9+0.99=10.89(分米)答:水面高度又变成了10.89分米(3)3301110.89=3010.89=326.7(立方分米)326.7(3010)=1.89(分米)10.89+1.89=12.78(分米)有一部分水溢出,水面高度为12分米答:水面高度又变成了12分米三、超越篇23有一个棱长为20的大立方体,在它的每个角上按如图的方式各做一个小立方体,于是得到8个小立方体在这些立方体中,上面4个的棱长为12,下面4个的棱长为13请问:所有这8个小立方体公共部分的体积是多少?【分析】如图1所示,从上向下看,上面的四个棱长是12的正方体重叠部分的边长是12+1220=4的正方形;如图2所示,从上向下看,下面的四个棱长是13的正方体重叠部分是边长为13+1320=6的正方形;如图3所示,从侧面看,上面四个棱长12的正方体和下面的四个棱长13的正方体的重叠部分高为12+1320=5,据此即可求出这8个小正方体的公共部分的体积【解答】解:根据题干分析可得:445=80答:公共部分的体积是8024地上有一堆小立方体,从上面看时如图1,从前面看时如图2,从左边看时如图3这一堆立方体一共有几个?如果每个小立方体的棱长为1厘米,那么这堆立方体所堆成的立体图形表面积为多少平方厘米?【分析】从上面看时如图1可得3行,3列正方体,由从正面看得到的图形2可得组合几何体底层有3列,3层正方体,由从侧面看得到的图形3可得组合几何体底层有3行正方体,有3层,由此得:第一层每列有2个正方体,第二层第一列有2个正方体,第三列有1个正方体,第三层第一列有1个正方体,所以一共有23+2+1+1=10个正方体,每个正方体外露5个面的有5个正方体,外露有4个正方体有3个,外露3个面的正方体有2个,据此可以求出这堆立方体所堆成的立体图形表面积【解答】解:由分析可知:23+2+1+1=10(个),1155+1143+1132=25+12+6=43(平方厘米),答:这一堆立方体一共有10个,这堆立方体所堆成的立体图形表面积43平方厘米25(1)已知一个圆柱的底面直径为6厘米,高为4厘米求它的体积和表面积;(答案用兀表示)(2)用一个半径为25厘米,圆心角为345.6的扇形围成一个圆锥,这个圆锥的体积是多少?如果圆心角是216呢?(答案用丌表示)【分析】(1)圆柱的侧面积=底面周长高,圆柱的表面积=侧面积+底面积2,圆柱的体积=底面积高把数据代入公式进行解答;(2)由已知利用弧长公式先求出这个圆弧长,圆弧长就是围成的圆锥的底面周长,由此可以求出圆锥的底面半径为及高,代入圆锥体积公式,即可得到答案【解答】解:(1)侧面积:64=24(平方厘米);表面积:24+(62)22=24+18=42(平方厘米);体积:(62)24=94=36(立方厘米);答:表面积是42平方厘米,体积是36立方厘米(2)圆心角为345.6的圆弧长为:=48(厘米);则圆锥体的底面周长为48厘米,则圆锥的底面半径为:482=24(厘米);因为母线长是25,所以:设圆锥的高为h,则:h2=252152=625225=400,因为2020=400,所以h=20;所以圆锥的体积为:24220=3840(立方厘米);答:这个圆锥的体积是3840立方厘米圆心角为216的圆弧长为:=30(厘米);则圆锥体的底面周长为30厘米,则圆锥的底面半径为:302=15(厘米);所以圆锥的体积为:15220=1500(立方厘米);答:这个圆锥的体积是1500立方厘米26将图1、图2中的平面图形分别折叠成一个四棱锥和三棱柱,这两个立体图形的体积分别是多少?(图1正中央是一个面积为18平方厘米的正方形,每边上分别有一个腰长为5厘米的等腰三角形;图2中的图形由三个长方形和两个直角三角形组成)【分析】图1首先求出四棱锥的高,根据四棱锥的体积公式:v=,把数据代入公式解答图2根据三棱柱的体积公式:v=sh,把数据代入公式解答【解答】解:34212=612=72(立方厘米),答:三棱柱的体积是72立方厘米27一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,如图圆柱体的底面直径和高都是12厘米,其内有一些水,正放时水面离容器顶11厘米,倒放时,水面离顶部5厘米请问:这个容器的容积是多少立方厘米?(兀取3.14)【分析】设圆锥体高是h厘米,水体积是v立方厘米,根据正放时和倒放时的体积不变,可得关于h的方程,求得圆锥体的高,再根据容器的容积=圆柱体的容积+圆锥体的容积列式计算即可求解【解答】解:设圆锥体高是h厘米,水体积是v立方厘米,则正放时水体积V=3.14(122)2(12+h11)倒放时水体积v=3.14(122)2h+3.14(122)2(125)则3.14(122)2(12+h11)=3.14(122)2h+3.14(122)2(125)解得h=9这个容器容积:3.14(122)212+3.14(122)29=3.14(122)2(12+3)=3.143615=1695.6(立方厘米)答:这个容器的容积是1695.6立方厘米28有一个长方体水池,底面为边长60厘米的正方形,里面插着一根长1米的木桩,木桩的底面是一个边长15厘米的正方形,木桩有一部分浸在水中,一部分露出水面现在将木桩提起来24厘米(仍有部分浸在水里),那么露出水面的木桩浸湿部分面积为多少平方厘米?【分析】因为露出水面的木桩上被水浸湿的部分长度包括提起来的24厘米和提起24厘米木桩后水面下降的高度之和,因为下降的水的体积等于提起的24厘米的长方体的体积,所以先根据长方体体积=长宽高求出高为24厘米的木桩的体积,再除以木桩还在水中时长方体容器的底面积(60601515)就可以求出下降的水的高度,再加上24即可解答【解答】解:151524(60601515)=54003375=1.6(厘米)24+1.6=25.6(厘米)15425.6=6025.6=1536(平方厘米)答:露出水面的木桩浸湿部分面积为1536平方厘米29右图是个有底无盖的容器的平面展开图,其中是边长为18厘米的正方形,是同样大的等腰直角三角形,是同样大的等边三角形那么,这个容器的容积是2430 毫升【分析】如图,该容器是一个棱长为18厘米的正方体割去八个角后(割到每条棱的中点)剩下的部分的一半【解答】解:(183938)=2430(毫升),答:这个容器的容积是2430毫升故答案为:243030有一个三棱柱和一个正方体,三棱柱的底面是一个等边三角形,边长恰好等于正方体的面对角线长度,三棱柱的高恰好等于正方体的体对角线长度,如果正方体的棱长为6,那么三棱柱的体积为多少?【分析】由题意,正方体的棱长为6,则面对角线长为6,体对角线长为6,根据正三棱柱的体积=底面积高列式解答即可【解答】解:正方体的棱长为6,则面对角线长为6,体对角线长为6,所以,正三棱柱的体积:66sin606=366=324(立方单位);答:三棱柱的体积为324立方单位参与本试卷答题和审题的老师有:姜运堂;ycfml12082;xuetao;kd274826;zxg;xiaosh;WX321;zcb101;rdhx;chenyr(排名不分先后)菁优网2016年5月22日考点卡片1长方体、正方体表面积与体积计算的应用【知识点归纳】(1)长方体:底面是矩形的直平行六面体,叫做长方体长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点长方体的表面积:等于它的六个面的面积之和如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体正方体的表面积:六个面积之和如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【命题方向】常考题型:例1:棱长是4厘米的正方体的表面积是96平方厘米,体积是64立方厘米,可以截成棱长是2厘米的正方体8个分析:根据正方体的表面积和体积公式即可求得其表面积和体积抓住正方题分割前后的体积不变,即可得出小正方体的个数解:446=96(平方厘米),444=64(立方厘米),222=8(立方厘米),648=8(个);答:棱长是4厘米的正方体的表面积是96平方厘米,体积是64立方厘米,可以截成棱长是2厘米的正方体8个故答案为:96;64;8点评:此题考查了正方体表面积和体积公式的灵活应用,以及正方体分割的方法例2:学校要粉刷新教室已知教室的长是8米,宽6米,高是3米,扣除门窗的面积11.4平方米,如果每平方米需要花4元涂料费,粉刷这个教室需要花费多少元?分析:由题意可知:需要粉刷的面积为教室四面墙壁和天花板的面积,利用长方体的表面积减去地面的面积和门窗面积即可;需要粉刷的面积乘每平方米花的钱数,就是粉刷这个教室需要的花费解:需要粉刷的面积:(86+63+38)28611.4,=(48+18+24)24811.4,=90259.4,=18059.4,=120.6(平方米);需要的花费:120.64=482.4(元);答:粉刷这个教室需要花费482.4元点评:此题主要考查长方体的表面积的计算方法的实际应用,关键是弄清楚:需要粉刷的面积由哪几部分组成2关于圆柱的应用题【知识点归纳】以矩形的一边所在直线为旋转轴,其余三边旋转360形成的曲面所围成的几何体叫作圆柱圆柱的性质:圆柱的上下两个面叫做底面;圆柱有一个曲面,叫做侧面;圆柱两个底面之间的距离叫做高(高有无数条)圆柱的侧面积=底面的周长高,S侧=Ch=dh=2rh(C表示底面的周长,d表示底面直径,r表示底面半径,h表示圆柱的高)圆柱的底面积=r2;圆柱的表面积=侧面积+两个底面积,S表=2r2+2rh圆柱的体积:等于底面积高,设一个圆柱底面半径为r,高为h,则体积V=r2h;如S为底面积,高为h,体积为V:V=Sh,也可以是V=r2h【命题方向】常考题型:例1:一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积将增加25.12平方厘米,原来圆柱的体积是100.48立方厘米分析:我们通过表面积将增加25.12平方厘米,求出圆柱的半径,然后再运用圆柱的体积公式求出原来圆柱的体积解:圆柱的底面圆的半径:25.1223.142=2(厘米);原来圆柱的体积:3.14228=100.48(立方厘米);答:原来圆柱的体积是100.48立方厘米故答案为:100.48点评:本题运用圆的周长公式及圆柱的体积公式进行解答即可例2:一个压路机的滚筒的横截面直径是1米,它的长是1.8米,如果滚筒每分钟转动8周,5分钟能压路多少平方米?分析:根据题意,压路机滚筒的侧面积是3.1411.8=5.652平方米;又滚筒每分钟转动8周,5分钟能转动85=40周,再乘上侧面积即可解:压路机滚筒的侧面积是:3.1411.8=5.652(平方米);5分钟能压路:855.652=226.08(平方米)答:5分钟能压路226.08平方米点评:此题主要考查圆柱体的侧面积,解答时一定要注意分清题目中条件,灵活解答3比的意义【知识点归纳】两个数相除,也叫两个数的比【命题方向】常考题型:例1:男生人数比女生人数多,男生人数与女生人数的比是()A、1:4 B、5:7 C、5:4 D、4:5分析:男生人数比女生人数多,把女生人数看作单位“1”,则男生人数是女生人数的(1+),由此即可求出男生与女生的人数的比,据此选择即可解:(1+):1,=:1,=5:4;故选:C点评:解答本题关键是:判断出单位“1”,求出男生人数是女生人数的几分之几,进而根据比的意义解答即可例1:甲数是乙数的,乙数是丙数的,甲、乙、丙三数的比是()A、4:5:8 B、4:5:6 C、8:12:15 D、12:8:15分析:根据题干分析可得,设甲数是2x,乙数是3x,则丙数就是3x=x,由此即可写出甲乙丙三个数的比是2x:3x:x,根据比的性质,即可得出最简比解:设甲数是2x,乙数是3x,则丙数就是3x=x,所以甲乙丙三个数的比是2x:3x:x=8:12:15,故选:C点评:此题考查比的意义,关键是根据甲乙丙的关系,分别用含有x的式子表示出这三个数,再利用比的性质化简比4从不同方向观察物体和几何体【知识点归纳】视图定义:当我们从某一角度观察一个实物时,所看到的图象叫做物体的一个视图物体的三视图特指主视图、俯视图、左视图主视图:在正面内得到的由前向后观察物体的视图,叫做主视图俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图人在观察目标时,从眼睛到目标的射线叫做视线,眼睛所在的位置叫做视点,有公共视点的两条视线所称的角叫做视角我们把视线不能到达的区域叫做盲区【命题方向】常考题型:例1:一个物体的形状如图所示,则此物体从左面看是()分析:这个几何体是由四个小正方体组成的,根据观察物体的方法,从正面看,是三个正方形,下行二个,上行一个位于右面;从上面看,是三个正方形,上行二个,下行一个位于右面;从左面看是三个正方形,下行二个,上行一个位于左面由此判断解:从左面看到的是三个正方形,左边一列二个正方形,右边一个正方形与左边一列下边的一个成一行;故选:B点评:本题是考查从不同方向观察物体和几何图形是培养学生的观察能力5简单的立方体切拼问题【知识点归纳】1拼起来,表面积减小,因为面的数目减少2剪切会增加表面积,因为面的数目增加3两种方式的体积都没有发生变化【命题方向】常考题型:例1:把两个棱长都是2分米的正方体拼成一个长方体,这个长方体的表面积比两个正方体的表面积的和减少了()平方分米A、4 B、8 C、16分析:两个棱长都是2分米的正方体拼成一个长方体,表面积正好减少了2个22的小正方体的面,由此计算出减少的表面积即可选择解:222=8(平方分米),答:这个长方体的表面积比两个正方体的表面积的和减少了8平方分米故选:B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年记者证考试采访技巧题库及答案
- 2025年数字绘图师招聘面试题库及参考答案
- 2025年悬疑分析师招聘面试参考题库及答案
- 德州医院笔试题库及答案
- 转工护士考试题库及答案
- 陕西会计初级题库及答案
- 2025年HR数据分析师招聘面试参考题库及答案
- 2025年车辆维修技师招聘面试参考题库及答案
- 外币业务会计题库及答案
- 2025年充电基础设施工程师招聘面试参考题库及答案
- 2025山东济南医学发展集团有限公司国有企业招聘22人笔试考试参考试题附答案解析
- 物业管理费用结构分析报告
- 2025天津港保税区安全生产技术专家招聘26人笔试考试参考题库附答案解析
- 2025卧室装修合同范本下载模板
- 高校思政说课课件
- 48个英语音标表打印
- 个人咨询服务合同个人咨询服务合同书
- 全国“创新杯”电类说课大赛课件一等奖作品组合逻辑电路设计 (说课)
- LY/T 2565-2015竹塑复合材料
- GB/T 9120-2010对焊环板式松套钢制管法兰
- GB/T 679-2002化学试剂乙醇(95%)
评论
0/150
提交评论