




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档1. 已知椭圆C中心在原点,焦点在轴上,焦距为,短轴长为 ()求椭圆C的标准方程;()若直线:与椭圆交于不同的两点(不是椭圆的左、右顶点),且以为直径的圆经过椭圆的右顶点求证:直线过定点,并求出定点的坐标 解: ()设椭圆的长半轴为,短半轴长为,半焦距为,则 解得 椭圆C的标准方程为 4分()由方程组 消去,得 6分由题意, 整理得: 7分设,则, 8分由已知, 且椭圆的右顶点为, 10分即 ,也即 ,整理得解得 或 ,均满足 11分当时,直线的方程为 ,过定点,不符合题意舍去;当时,直线的方程为 ,过定点, 故直线过定点,且定点的坐标为 13分2. 在直角坐标系中,点到F1、F2的距离之和是4,点的轨迹与轴的负半轴交于点,不过点的直线:与轨迹交于不同的两点和(1)求轨迹的方程;(2)当时,求与的关系,并证明直线过定点解:(1)点到,的距离之和是4,M的轨迹是长轴长为4,焦点在x轴上焦距为的椭圆,其方程为 3分(2)将,代入曲线的方程,整理得,5分因为直线与曲线交于不同的两点和, 所以 设,则, 7分且 显然,曲线与轴的负半轴交于点,所以,由,得将、代入上式,整理得,10分所以,即或经检验,都符合条件当时,直线的方程为显然,此时直线经过定点点即直线经过点,与题意不符当时,直线的方程为显然,此时直线经过定点点,且不过点综上,与的关系是:,且直线经过定点点13分3. 已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切()求椭圆的方程;()设,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点;()在()的条件下,过点的直线与椭圆交于,两点,求的取值范围解:()由题意知, 所以即又因为,所以,故椭圆的方程为4分()由题意知直线的斜率存在,设直线的方程为由 得 6分设点,则直线的方程为令,得将,代入,整理,得 由得 ,代入整理,得所以直线与轴相交于定点9分()当过点直线的斜率存在时,设直线的方程为,且,在椭圆上由 得 易知所以, 则因为,所以所以当过点直线的斜率不存在时,其方程为解得,此时所以的取值范围是13分4. 已知是椭圆C的两个焦点,、为过的直线与椭圆的交点,且的周长为()求椭圆C的方程;()判断是否为定值,若是求出这个值,若不是说明理由.解:()由椭圆定义可知, 2分所以所以椭圆方程为 5分()设(1) 当直线斜率不存在时,有, 6分(2) 当直线斜率存在时,设直线方程为代入椭圆方程,并整理得: 7分所以(或求出的值)所以 12分所以 13分5.已知椭圆,的两焦点分别为、,离心率.过直线:上任意一点,引椭圆的两条切线,切点为 、.(1)在圆中有如下结论:“过圆上一点处的切线方程为:”. 由上述结论类比得到:“过椭圆 ,上一点处的切线方程”(只写类比结论,不必证明).(2) 利用(1)中的结论证明直线恒过定点();(3)当点的纵坐标为时,求的面积.6. 在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m0,。(1)设动点P满足,求点P的轨迹;(2)设,求点T的坐标;(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。【解析】 本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。考查运算求解能力和探究问题的能力。解:(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。由,得 化简得。故所求点P的轨迹为直线。(2)将分别代入椭圆方程,以及得:M(2,)、N(,)直线MTA方程为:,即,直线NTB 方程为:,即。联立方程组,解得:,所以点T的坐标为。(3)点T的坐标为直线MTA方程为:,即,直线NTB 方程为:,即。分别与椭圆联立方程组,同时考虑到,解得:、。(方法一)当时,直线MN方程为:令,解得:。此时必过点D(1,0);当时,直线MN方程为:,与x轴交点为D(1,0)。所以直线MN必过x轴上的一定点D(1,0)。(方法二)若,则由及,得,此时直线MN的方程为,过点D(1,0)。若,则,直线MD的斜率,直线ND的斜率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025重庆市公路客运联网售票中心有限公司公开招聘4人备考考试题库附答案解析
- 2025年湖北生态工程职业技术学院公开招聘合同制辅导员4人备考考试题库附答案解析
- 2025年安徽省政务服务中心招聘某政务热线话务员10名备考考试题库附答案解析
- 2025中国煤炭地质总局招聘6人考试模拟试题及答案解析
- 2025年甘肃省定西市岷县梅川中心卫生院招聘乡村医生备考考试题库附答案解析
- 2025年湖南益阳市第三人民医院合同制人才招聘14人备考考试题库附答案解析
- 2025江西南昌市劳动保障事务代理中心招聘外包驾驶员1人备考考试题库附答案解析
- 房地产合同风险防范与管理案例
- 2025西咸新区沣东新城泰和医院招聘(6人)备考考试题库附答案解析
- 2025年合肥市香格里拉小学教师招聘备考考试试题及答案解析
- 初中化学物质的分类
- 合同起草审查指南:三观四步法
- 蒙山旅游景区基础设施建设项目可行性研究报告
- 档案制作合同模版
- dd5e人物卡可填充格式角色卡夜版
- 小区广播系统设计方案
- 电厂集控全能运行值班员应知应会(终结版)
- 化粪池建设项目监理细则
- 抗滑桩安全技术交底
- 南通城市介绍家乡介绍PPT
- GB/T 5271.28-2001信息技术词汇第28部分:人工智能基本概念与专家系统
评论
0/150
提交评论