重金属废水治理.doc_第1页
重金属废水治理.doc_第2页
重金属废水治理.doc_第3页
重金属废水治理.doc_第4页
重金属废水治理.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

污水处理,就到污水宝!重金属废水治理重金属废水常见于电镀、电子工业和冶金工业,尤其是电镀、电子工业废水,成分复杂,除含氰(CN-)废水和酸碱废水外,根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(Ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(Au)废水、含银(Ag)废水等。一、重金属废水的主要来源重金属废水常见于电镀、电子工业和冶金工业,尤其是电镀、电子工业废水,它的成分非常复杂,除含氰(CN-)废水和酸碱废水外,根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(Ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(Au)废水、含银(Ag)废水等。对于重金属废水,由于其对自然环境危害大,所以国内外普遍十分重视此类废水的处理,研究出多种治理技术。通过对其治理,采取将有毒化为无毒、将有害转化为无害,并且回收其中的贵重金属,将净化后的废水循环使用等措施,消除和减少重金属的排放量。随着电镀、电子工业的快速发展和环保要求的日益提高,目前,此类行业已逐渐采用清洁生产工艺、总量控制和循环经济整合阶段,资源回收利用和闭路循环是重金属废水处理发展的主流方向。二、重金属废水的常用处理技术1化学沉淀化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。中和沉淀法在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点:(1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放;(2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀;(3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理;(4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。硫化物沉淀法加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀后从废水中去除的方法。与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,反应时最佳pH值在79之间,处理后的废水不用中和。硫化物沉淀法的缺点是:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染。为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高)。由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时能够有效地避免硫化氢的生成和硫化物离子残留的问题。2氧化还原处理化学还原法电镀废水中的Cr主要以Cr6+离子形态存在,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,投加石灰或NaOH产生Cr(OH)3沉淀分离去除。化学还原法治理电镀废水是最早应用的治理技术之一,在我国有着广泛的应用,其治理原理简单、操作易于掌握、能承受大水量和高浓度废水冲击。根据投加还原剂的不同,可分为FeSO4法、NaHSO3法、铁屑法、SO2法等。应用化学还原法处理含Cr废水,碱化时一般用石灰,但废渣多;用NaOH或Na2CO3,则污泥少,但药剂费用高,处理成本大,这是化学还原法的缺点。铁氧体法铁氧体技术是根据生产铁氧体的原理发展起来的。在含Cr废水中加入过量的FeSO4,使Cr6+还原成Cr3+,Fe2+氧化成Fe3+,调节pH值至8左右,使Fe离子和Cr离子产生氢氧化物沉淀。通入空气搅拌并加入氢氧化物不断反应,形成铬铁氧体。其典型工艺有间歇式和连续式。铁氧体法形成的污泥化学稳定性高,易于固液分离和脱水。铁氧体法除能处理含Cr废水外,特别适用于含重金属离子种类较多的电镀混合废水。我国应用铁氧体法已经有几十年历史,处理后的废水能达到排放标准,在国内电镀工业中应用较多。铁氧体法具有设备简单、投资少、操作简便、不产生二次污染等优点。但在形成铁氧体过程中需要加热(约70oC),能耗较高,处理后盐度高,而且有不能处理含Hg和络合物废水的缺点。电解法电解法处理含Cr废水在我国已经有二十多年的历史,具有去除率高、无二次污染、所沉淀的重金属可回收利用等优点。大约有30多种废水溶液中的金属离子可进行电沉积。电解法是一种比较成熟的处理技术,能减少污泥的生成量,且能回收Cu、Ag、Cd等金属,已应用于废水的治理。不过电解法成本比较高,一般经浓缩后再电解经济效益较好。近年来,电解法迅速发展,并对铁屑内电解进行了深入研究,利用铁屑内电解原理研制的动态废水处理装置对重金属离子有很好的去除效果。另外,高压脉冲电凝系统(HighVoltageElectrocagulationSystem)为当今世界新一代电化学水处理设备,对表面处理、涂装废水以及电镀混合废水中的Cr、Zn、Ni、Cu、Cd、CN-等污染物有显著的治理效果。高压脉冲电凝法比传统电解法电流效率提高20%30%;电解时间缩短30%40%;节省电能达到30%40%;污泥产生量少;对重金属去除率可达96%一99%。3溶剂萃取分离溶剂萃取法是分离和净化物质常用的方法。由于液一液接触,可连续操作,分离效果较好。使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用。这就要求在萃取操作时注意选择水相酸度。尽管萃取法有较大优越性,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性,应用受到很大的限制。4吸附法吸附法是利用吸附剂的独特结构去除重金属离子的一种有效方法。利用吸附法处理电镀重金属废水的吸附剂有活性炭、腐植酸、海泡石、聚糖树脂等。活性炭装备简单,在废水治理中应用广泛,但活性炭再生效率低,处理水质很难达到回用要求,一般用于电镀废水的预处理。腐植酸类物质是比较廉价的吸附剂,把腐植酸做成腐植酸树脂用以处理含Cr、含Ni废水已有成功经验。有相关研究表明,壳聚糖及其衍生物是重金属离子的良好吸附剂,壳聚糖树脂交联后,可重复使用10次,吸附容量没有明显降低。利用改性的海泡石治理重金属废水对Pb2+、Hg2+、Cd2+有很好的吸附能力,处理后废水中重金属含量显著低于污水综合排放标准。另有文献报道蒙脱石也是一种性能良好的粘土矿物吸附剂,铝锆柱撑蒙脱石在酸性条件下对Cr6+的去除率达到99%,出水中Cr6+含量低于国家排放标准,具有实际应用前暑。同时可以查看中国污水处理工程网更多技术文档。5膜分离法膜分离法是利用高分子所具有的选择性来进行物质分离的技术,包括电渗析、反渗透、膜萃取、超过滤等。用电渗析法处理电镀工业废水,处理后废水组成不变,有利于回槽使用。含Cu2+、Ni2+、Zn2+、Cr6+等金属离子废水都适宜用电渗析处理,已有成套设备。反渗透法已大规模用于镀Zn、Ni、Cr漂洗水和混合重金属废水处理。采用反渗透法处理电镀废水,已处理水可以回用,实现闭路循环。液膜法治理电镀废水的研究报道很多,有些领域液膜法已由基础理论研究进入到初步工业应用阶段,如我国和奥地利均用乳状液膜技术处理含Zn废水,此外也应用于镀Au废液处理中。膜萃取技术是一种高效、无二次污染的分离技术,该项技术在金属萃取方面有很大进展。6离子交换法离子交换处理法是利用离子交换剂分离废水中有害物质的方法,应用的离子交换剂有离子交换树脂、沸石等等,离子交换树脂有凝胶型和大孔型。前者有选择性,后者制造复杂、成本高、再生剂耗量大,因而在应用上受到很大限制。离子交换是靠交换剂自身所带的能自由移动的离子与被处理的溶液中的离子通过离子交换来实现的。推动离子交换的动力是离子间浓度差和交换剂上的功能基对离子的亲和能力,多数情况下离子是先被吸附,再被交换,离子交换剂具有吸附、交换双重作用。这种材料的应用越来越多,如膨润土,它是以蒙脱石为主要成分的粘土,具有吸水膨胀性好、比表面积大、较强的吸附能力和离子交换能力,若经改良后其吸附及离子交换的能力更强。但是却较难再生,天然沸石在对重金属废水的处理方面比膨润土具有更大的优点:沸石是含网架结构的铝硅酸盐矿物,其内部多孔,比表面积大,具有独特的吸附和离子交换能力。研究表明,沸石从废水中去除重金属离子的机理,多数情况下是吸附和离子交换双重作用,随流速增加,离子交换将取代吸附作用占主要地位。若用NaCl对天然沸石进行预处理可提高吸附和离子交换能力。通过吸附和离子交换再生过程,废水中重金属离子浓度可浓缩提高30倍。沸石去除铜,在NaCl再生过程中,去除率达97%以上,可多次吸附交换,再生循环,而且对铜的去除率并不降低。三、生物处理技术由于传统治理方法有成本高、操作复杂、对于大流量低浓度的有害污染难处理等缺点,经过多年的探索和研究,生物治理技术日益受到人们的重视。随着耐重金属毒性微生物的研究进展,采用生物技术处理电镀重金属废水呈现蓬勃发展势头,根据生物去除重金属离子的机理不同可分为生物絮凝法、生物吸附法、生物化学法以及植物修复法。1生物絮凝法生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。微生物絮凝剂是一类由微生物产生并分泌到细胞外,具有絮凝活性的代谢物。一般由多糖、蛋白质、DNA、纤维素、糖蛋白、聚氨基酸等高分子物质构成,分子中含有多种官能团,能使水中胶体悬浮物相互凝聚沉淀。至目前为止,对重金属有絮凝作用的约有十几个品种,生物絮凝剂中的氨基和羟基可与Cu2+、Hg2+、Ag+、Au2+等重金属离子形成稳定的鳌合物而沉淀下来。应用微生物絮凝法处理废水安全方便无毒、不产生二次污染、絮凝效果好,且生长快、易于实现工业化等特点。此外,微生物可以通过遗传工程、驯化或构造出具有特殊功能的菌株。因而微生物絮凝法具有广阔的应用前景。有重金属废水需要处理的单位,也可以到污水宝项目服务平台咨询具备类似污水处理经验的企业。2生物吸附法生物吸附法是利用生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,再通过固液两相分离去除水溶液中的金属离子的方法。利用胞外聚合物分离金属离子,有些细菌在生长过程中释放的蛋白质,能使溶液中可溶性的重金属离子转化为沉淀物而去除。生物吸附剂具有来源广、价格低、吸附能力强、易于分离回收重金属等特点,已经被广泛应用。3生物化学法生物化学法指通过微生物处理含重金属废水,将可溶性离子转化为不溶性化合物而去除。硫酸盐生物还原法是一种典型生物化学法。该法是在厌氧条件下硫酸盐还原菌通过异化的硫酸盐还原作用,将硫酸盐还原成H2S,废水中的重金属离子可以和所产生的H2S反应生成溶解度很低的金属硫化物沉淀而被去除,同时H2SO4的还原作用可将SO42-转化为S2-而使废水的pH值升高。因许多重金属离子氢氧化物的离子积很小而沉淀。有关研究表明,生物化学法处理含Cr6+浓度为3040mg/L的废水去除率可达99.67%99.97%。有人还利用家畜粪便厌氧消化污泥进行矿山酸性废水重金属离子的处理,结果表明该方法能有效去除废水中的重金属。赵晓红等人用脱硫肠杆菌(SRV)去除电镀废水中的铜离子,在铜质量浓度为246.8mg/L的溶液,当pH为4.0时,去除率达99.12%。4植物修复法植物修复法是指利用高等植物通过吸收、沉淀、富集等作用降低已有污染的土壤或地表水的重金属含量,以达到治理污染、修复环境的目的。植物修复法是利用生态工程治理环境的一种有效方法,它是生物技术处理企业废水的一种延伸。利用植物处理重金属,主要有三部分组成:(1)利用金属积累植物或超积累植物从废水中吸取、沉淀或富集有毒金属;(2)利用金属积累植物或超积累植物降低有毒金属活性,从而可减少重金属被淋滤到地下或通过空气载体扩散:(3)利用金属积累植物或超积累植物将土壤中或水中的重金属萃取出来,富集并输送到植物根部可收割部分和植物地上枝条部分。通过收获或移去已积累和富集了重金属植物的枝条,降低土壤或水体中的重金属浓度。在植物修复技术中能利用的植物有藻类、草本植物、木本植物等。藻类净化重金属废水的能力,主要表现在对重金属具有很强的吸附力,利用藻类去除重金属离子的研究已有大量报道。褐藻对Au的吸收量达400mg/g,在一定条件下绿藻对Cu、Pb、La、Cd、Hg等重金属离子的去除率达80%90%,马尾藻、鼠尾藻对重金属的吸附虽然不及绿海藻,但仍具有较好的去除能力。草本植物净化重金属废水的应用已有很多报道。凤眼莲是国际上公认和常用的一种治理污染的水生漂浮植物,它具有生长迅速,既能耐低温、又能耐高温的特点,能迅速、大量地富集废水中Cd、Pb、Hg、Ni、Ag、Co、Cr等多种重金属。有关研究发现凤眼莲对钴和锌的吸收率分别高达97%和80%。此外,还有很多草本植物具有净化作用,如喜莲子草、水龙、刺苦草、浮萍、印度芥菜等。木本植物具有处理量大、净化效果好、受气候影响小、不易造成二次污染等等优点,受到人们广泛关注。同时对土壤中Cd、Hg等有较强的吸附积累作用,由胡焕斌等试验结果表明:芦苇和池杉对重金属Pb和Cd都有较强富集能力。四、微生物处理重金属废水的机理1.1 微生物对重金属的吸附作用微生物的吸附作用是指利用某些微生物本身的化学成分和结构特性来吸附废水中的重金属离子,通过固液两相分离达到去除废水中的重金属离子的目的。生物吸附剂为自然界中丰富的生物资源,如藻类、地衣、真菌和细菌等。微生物结构的复杂性以及同一微生物和不同金属间亲和力的差别决定了微生物吸附金属的机理非常复杂,至今尚未得到统一认识。根据被吸附重金属离子在微生物细胞中的分布,一般将微生物对金属离子的吸附分为胞外吸附、细胞表面吸附和胞内吸附。1.1.1 胞外吸附一些微生物可以分泌多聚糖,糖蛋白,脂多糖,可溶性氨基酸等胞外聚合物质(extracellular polymeric substances,EPS),EPS具有络合或沉淀金属离子作用。如蓝细菌能分泌多糖等胞外聚合物,一些白腐真菌可以分泌柠檬酸(金属螯合剂)或草酸(与金属形成草酸盐沉淀)。Suh等研究发现,当茁芽短梗霉(Aureobasidium pullulans)分泌EPS 时,Pb2+便积累于整个细胞的表面,且随着细胞的存活时间增长,EPS的分泌量增多,积累于细胞表面的Pb2+水平就越高,从最初的56.9 上升到215.6mg/g(干重);当把细胞分泌的EPS提取出来后,Pb2+便会渗透到细胞内,但Pb2+的积累量显著减少( 最高量仅为35.8mg/g 干重)。1.1.2 细胞表面吸附细胞表面吸附是指金属离子通过与细胞表面,特别是细胞壁组分( 蛋白质、多糖、脂类等) 中的化学基团( 如羧基、羟基、磷酰基、酰胺基、硫酸脂基、氨基、巯基等) 的相互作用,吸附到细胞表面。如将酵母细胞壁上氨基,羧基,羟基等化学基团进行封闭,则会减少其对Cu2+的吸收量,表明这些基团在结合Cu2+方面具有重要的作用,这也间接证明了细胞壁上蛋白质和糖类在生物吸附中的作用。金属离子被细胞表面吸附的机制包括离子交换、表面络合、物理吸附(如范德华力、静电作用)、氧化还原或无机微沉淀等。不同的微生物对不同金属的吸附作用机制不同(表1)。Kratochvil等认为,离子交换是许多非活性真菌和藻类吸附金属离子的主要机理,主要是细胞表面的羧基,其次是硫酸脂基和氨基在生物吸附中发挥了重要作用。Davis等也认为离子交换是褐藻吸附金属离子的主要机制,特别是以前被认为的物理和化学的结合机制都可以用离子交换来解释。细胞表面功能基团中的氮、氧、硫、磷等原子,可以作为配位原子与金属离子配位络合。例如Zn、Pb可以与产黄青霉(P. chrysogenum) 表面的磷酰基和羧基形成络合物,溶液中的阴离子(EDTA、SO42-、Cl- 、PO33-等)可以与细胞竞争重金属阳离子,形成络合物,从而降低产黄青霉对Zn、Pb的吸附量,这也间接地说明细胞表面对金属离子的吸附确实存在络合机制。关于氧化还原和无机微沉淀的机制也有少量报道。如Lin采用X 射线衍射(XRD)、红外光谱(IR)以及光电子能谱(XPS)技术,研究了废弃酵母吸附Au3+的过程,发现还原性糖(细胞壁肽聚糖层的多糖水解产物) 半缩醛基团中的自由醛基,可以作为电子供体,将Au3+原位还原为Au0。1.1.3 胞内吸附与转化一些金属离子能透过细胞膜,进入细胞内。金属离子进入细胞后,微生物可通过区域化作用(compartmentalization)将其分布于代谢不活跃的区域(如液泡),或将金属离子与热稳定蛋白结合,转变成为低毒的形式。如活酵母吸收的Sr、Co 离子积累于液泡中,而Cd和Cu 离子位于酵母的可溶性部分(soluble fraction);同时液泡缺陷型酵母对Zn、Mn、Co、Ni 离子的敏感性增加,吸附量降低;但其对Cu 和Cd 离子的吸附与野生型则没有明显的区别。Vijver认为细胞的区域化作用主要有两种类型:形成明显的包含体和重金属与热稳定蛋白结合,后者主要指金属硫蛋白(metallothioneins,简称MT)。金属硫蛋白的分子量低(200010000kDa),富含半胱氨酸,可被金属Cd、Cu、Hg、Co、Zn 等诱导,并与这些金属结合。此外,谷胱甘肽(GSH)、植物凝集素(phytochelatins)和不稳定硫化物(labile sulfide) 也具有储备、调节和解毒胞内金属离子作用。GSH 是典型的低分子量硫醇,富含半胱氨酸残基和组氨酸残基,是对金属离子有高度的亲和力的肽链,因此具备金属解毒功能。目前,利用生物工程技术,在微生物细胞内表达金属结合蛋白或金属结合肽,从而制备全细胞工具(whole cell tools)来分离废水中重金属方面的研究日益受到关注。1.2 微生物对重金属的沉淀作用微生物对重金属离子的沉淀作用,一般认为是由于微生物对金属离子的异化还原作用或是由于微生物自身新陈代谢的结果。一方面,一些微生物可分泌特异的氧化还原酶,催化一些变价金属元素发生氧化还原反应,或者其代谢产物或细胞自身的某些还原物直接将毒性强的氧化态的金属离子还原为无毒性或低毒性的离子;另一方面,一些微生物的代谢产物(硫离子、磷酸根离子)与金属离子发生沉淀反应,使有毒有害的金属元素转化为无毒或低毒金属沉淀物(表2)。1.2.1 还原作用一些微生物在其生长代谢过程中,可分泌特异的氧化还原酶,催化一些变价金属元素发生氧化还原反应,使金属离子的溶解度或毒性降低(表2)。例如,许多好氧和厌氧微生物能将如Cr6+还原为Cr3+ ,在好氧条件下,Cr6+的生物还原作用主要受可溶性酶催化,但嗜麦芽假单胞菌( Pseudomonas maltophilia)O-2 和巨大芽孢杆菌TKW3 除外,其催化Cr6+还原为Cr3+的酶为膜结合还原酶。近年来,分别已从恶臭假单胞菌MK1 和大肠杆菌纯化了ChrR 和YieF 两种可溶性Cr6+还原酶,其中ChrR 催化一个电子转运,形成中间产物Cr5+和(或)Cr4+,进一步转运两个电子,形成Cr3+;而YieF 转运四个电子,直接将Cr6+还原为Cr3+。研究者也已从巨大芽孢杆菌TKW3中分离出膜结合的Cr6+还原酶,但对其还原动力学过程还不清楚。在厌氧条件下,可溶性酶和膜结合还原酶均可催化Cr6+还原为Cr3+,Cr6+作为电子转运链中的电子受体,且细胞色素(如细胞色素a和细胞色素b)参与此氧化还原过程。同时可以查看中国污水处理工程网更多技术文档。另外,一些微生物的代谢产物或细胞自身的某些还原物将毒性强的氧化态的金属离子还原为无毒性或低毒性的离子。例如,在硫酸盐还原菌体系中,Fe2+和S2-产物能间接地将Cr6+还原为Cr3+。一些Fe(III)同化微生物(如Geobacter metallireducens)可将U(VI)还原为U(IV),使U的溶解度降低,从而可达到去除废水中U的目的。1.2.2 金属硫化物沉淀在pH值为中性、一定的基质浓度和厌氧条件下,硫酸还原菌(SRB)能将硫酸根离子还原成硫离子,S2-与废水中的的Zn2+,Cd2+,Pb2+,Cu2+ 等发生沉淀反应,形成不溶性的金属硫化物,从而实现废水的净化处理。SRB广泛分布于自然界,典型的代表有脱硫弧菌(Desulfovibrio),脱硫微菌(Desulfomicrobium),脱硫杆菌(Desulfobacter),脱硫八叠菌(Desulfosarcina),脱硫肠菌(Desulfotomaculum),热脱硫杆菌(Thermodesulfobacterium),古球菌(Archaeoglobus)等。SRB能在厌氧条件下将金属离子转化为硫化物沉淀,这对处理高浓度重金属废水有着非常重要的意义,而且利用共生的混合SRB菌株要比单一SRB菌株处理含重金属废水更有效率。然而,通常低浓度(20200m)的Cd2+、Zn2+、Ni2+等会对SRB 产生毒害作用,从而限制了SRB的广泛应用。通过基因过程手段,可将SRB 中的硫酸还原酶转移到其他环境菌中,使转化菌具有形成金属硫化物沉淀的能力。在这方面的首次努力的是将肠沙门氏菌(Salmonella enterica)体内的硫酸盐还原酶基因在大肠杆菌体内表达,表达后的大肠杆菌DH5能够比控制在好氧或厌氧条件下的普通大肠杆菌产生更多的金属硫化物沉淀,且重组菌在厌氧条件下对高浓度水平(200mmol/L)Cd2+的去除率达到98%。1.2.3 金属磷酸盐沉淀磷酸盐是合成核酸、ATP 等重要生物分子所必需,通常生命体并不释放过量的磷酸盐。然而微生物可通过两条途径释放无机磷酸盐: 一些柠檬酸杆菌能分泌酸性磷酸酶,催化2- 磷酸甘油水解,释放无机磷酸盐,从而在细胞表面积累大量的磷酸盐,并与废水中的金属发生沉淀反应,形成金属磷酸盐沉淀。酸性磷酸酶催化的过程是与外膜和胞外的脂多糖(LPS)相偶联的,因为金属磷酸盐矿物的启动是从LPS 中的磷酸基团的核晶过程开始的,随着有机磷不断被酸性磷酸酶水解,释放出无机磷酸盐,金属磷酸盐晶体不断增大。Finlay 等研究发现,将柠檬酸菌细胞固定于生物膜反应器通过化学耦合可以去除90%的金属U(以HUO2PO4形式沉淀);一些细菌释放无机磷酸盐并不依赖有机磷酸盐供体,而是加速细菌体内的磷酸盐循环,如约氏不动杆菌(Acinetobacter johnsonii)。在好氧条件下,细菌不断合成多磷酸盐,并作为其生长代谢的能源物质;在厌氧条件下,多磷酸盐被降解产生ATP,同时产生金属磷酸盐的沉淀。而且,一些金属离子(如Cd、UO22+) 能促进多磷酸盐的降解,产生更多的无机Pi。如通过控制大肠杆菌(E. coli)体内编码多磷酸盐激酶(polyphosphate kinase,ppk) 和多磷酸盐酶(polyphosphatase,ppx)的基因的共同表达,能降低细胞内多磷酸盐的水平和促进磷酸盐的分泌,从而增加大肠杆菌对金属的耐性。2 影响微生物修复的因素2.1 微生物的影响2.1.1 微生物的种类在微生物处理重金属废水过程中,不同微生物对同一种金属离子的去除效率不同。如表3所示,不同微生物对同一种金属离子的吸附量的差异显著。2.1.2 微生物的预处理微生物的预处理是指在处理重金属废水之前,采用干燥、强酸和强碱溶液浸泡等物理或化学方法处理细胞。通常,预处理可提高微生物对重金属离子的去除能力和微生物的稳定性。如Cihangir等发现,干燥处理后的真菌凤尾菇(Pleurotus Sajorcaju)对废水中Cd2+的去除能力显著提高,且冷冻干燥的效果比烘箱干燥好。经过乙醇处理的废弃酵母细胞对废水中Cd2+和Pb2+的吸附量分别达15.63和17.49mg/g(干重),分别比对照增加了2倍和1倍。Celaya等发现,NaOH处理后的氧化亚铁硫杆菌(Thiobacillus ferrooxidans)对重金属离子的吸附量显著增加,其原因可能在于细胞表面的吸附位点的去质子化,从而增加金属离子的吸附位点。有废水需要处理的单位,也可以到污水宝项目服务平台咨询具备类似污水处理经验的企业。2.1.3 微生物的存在状态微生物的存在状态(游离的、被固定在载体上)对其处理重金属废水的效果具有显著影响。如游离的酵母细胞对Pb2+和Zn2+的吸附量分别为79.2和23.4mg/g(干重),而当用明胶载体固定后,其吸附量分别为41.9和35.3mg/g(干重)。采用固定化微生物细胞富集水体中的重金属,实际上起着生物离子交换树脂的作用,而且固定化细胞比离子交换更为经济,不受Ca2+、Mg2+、Na+和K+等离子的影响,在废水处理和受污染水环境的修复中更实用。2.2 金属离子的影响2.2.1 金属离子的种类同一种微生物对不同金属离子的处理效果也不同。如在最优条件下,龟裂链霉菌对Zn、Cu 和Ni的吸收量分别为6.03、9.07和1.63mg/g(干重),泡叶藻对Zn、Cu和Ni的吸收量分别为25.6、4.89 和1.11mg/g(干重)。Iqbal等研究发现,采用多孔载体(loofa sponge)固定的黄孢原毛平革菌对Pb2+、Cu2+和Zn2+的去除率分别可达88.2%、68.7%和39.6%;吸附容量分别达135.3mg/g、102.8mg/g和50.9mg/g干重。2.2.2 金属离子的浓度一般来说,随着水体中重金属离子浓度的增加,微生物去除重金属离子的初始速度增大,但去除效率降低;反之,金属离子的浓度越低,去除的初始速度越小,去除效率越大。如在低浓度下,黄孢原毛平革菌对Cd2+去除速率随着Cd2+浓度而增加,但当Cd2+浓度达到一定值时(约300mg/L),去除率达到最大值,Cd2+浓度进一步增加对去除率没有影响。2.2.3 共存离子共存离子对微生物去除重金属的能力也有一定的影响。金属离子共存的影响主要有:促进作用、遏制作用和零作用。如Kaewsarn发现,Na+对钙扇藻(Padina sp.)吸附废水中的Cu2+几乎没有影响,而K+、Mg2+和Ca2+分别使Cu2+的去除效率减少了4%、11%和13%。Texier等研究发现,溶液中的Na+,K+,Ca2+,NO3-,SO42-,Cl-对铜绿假单胞菌吸附镧系离子没有影响,但Al3+具有强烈地抑制作用,在3mmol/L的溶液中,大约87%的Al3+被去除,而L

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论