全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
集合、简易逻辑、函数易错点梳理1 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A=x,xy,lgxy,集合B=0,x,y,且A=B,则x+y= 2 研究集合,首先必须弄清代表元素,才能理解集合的意义.(1)已知“集合M=yy=x2 ,xR,N=yy=x2+1,xR,求MN”;与“集合M=(x,y)y=x2 ,xR,N=(x,y)y=x2+1,xR求MN”的区别.(2)已知集合,则中的元素个数是_个.你注意空集了吗?(3)设的定义域A是无限集,则下列集合中必为无限集的有 3 集合 A、B,时,你是否注意到“极端”情况:或;求集合的子集时是否忘记. 例如:对一切恒成立,求a的取植范围,你讨论了的情况了吗? 4 (CUA)( CU B) = CU(AB) , (CUA)( CUB) = CU(AB); ,对于含有n个元素的有限集合, 其子集、真子集、非空子集、非空真子集的个数依次为 如满足条件的集合共有多少个?(特别注意)5 解集合问题的基本工具是韦恩图.某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法?6 两集合之间的关系.7 命题的四种形式及其相互关系;全称命题和存在命题.(1)原命题与逆否命题同真同假;逆命题与否命题同真同假.(2)“命题的否定”与“否命题”的区别:_练习:(1)命题“异面直线不垂直,则过的任一平面与都不垂直”,求出该命题的否命题.(2)命题“”,求该命题的否定.(3)若存在,使不等式,求的取值范围.8、你对映射的概念了解了吗?映射f:AB中,A中元素的任意性和B中与它对应元素的唯一性,映射与函数的关系如何?例如:函数与直线的交点的个数有 个9、函数的几个重要性质: 如果函数对于一切,都有或f(2a-x)=f(x),那么函数的图象关于直线对称. 函数与函数的图象关于直线对称; 函数与函数的图象关于直线对称; 函数与函数的图象关于坐标原点对称. 若奇函数在区间上是递增函数,则在区间上也是递增函数 若偶函数在区间上是递增函数,则在区间上是递减函数 函数的图象是把函数的图象沿x轴向左平移a个单位得到的;函数(的图象是把函数的图象沿x轴向右平移个单位得到的;函数+a的图象是把函数助图象沿y轴向上平移a个单位得到的;函数+a的图象是把函数助图象沿y轴向下平移个单位得到的.函数与函数的图象关于直线对称例如:(1)函数满足则关于直线 对称(2)函数与关于直线 对称(3)函数()的图象关于直线对称,则a= (4)函数的图象可由的图象按向量 (最小)平移得到.10、求一个函数的解析式,你标注了该函数的定义域了吗?例如:(1)若,则 (2)若,则 11、求函数的定义域的常见类型记住了吗?复合函数的定义域弄清了吗?例如:(1)函数y=的定义域是 ;(2)函数的定义域是0,1,求的定义域.(3)函数的定义域是(0,1,求的定义域. 函数的定义域是, 求函数的定义域12、你知道求函数值域的常用方法有哪些吗,含参的二次函数的值域、最值要记得讨论.例如(1)已知函数的值域是,则函数的值域是 (2)函数的值域是 (3)函数的值域是 (4)函数的值域是 13、 判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗? 在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数;例如:(1)函数的奇偶性是 (2)函数是R上的奇函数,且时,则的表达式为 14、根据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.)可别忘了导数也是判定函数单调性的一种重要方法.在求函数的单调区间或求解不等式时,你知道函数的定义域要优先考虑吗?例如:(1)函数的单调减区间为 (2)若函数在区间上是减函数,则实数a的取值范围是 (3)若定义在R上的偶函数在区间上是单调增函数,则不等式的解集为 15、你知道钩型函数的单调区间吗?(该函数在和上单调递增;在和上单调递减)这可是一个应用广泛的函数!例如:函数的值域为 的值域为 16、幂函数与指数函数有何区别?例如:(1)若幂函数是上的单调减函数,则= (2)若关于x的方程有解,则实数a的取值范围是 17、对数的换底公式及它的变形,你掌握了吗?()你还记得对数恒等式吗?()例如:(1)x、y、z且,则3x、4y、6z的大小关系可按从小到大的顺序排列为 (2)若集合,则A的子集有 个18、求解对数函数问题时,注意真数与底数的限制条件!例如:(1)方程的解的个数是 (2)不等式成立的充要条件是 19、“实系数一元二次方程有实数解”转化为“”,你是否注意到必须;当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理教学试题题库及答案解析
- 采集业网络安全态势感知系统-洞察及研究
- 针对特定NFT类型如音乐艺术品的版权合规操作计划
- 药店框架营销方案
- 人事专员培训计划与实施方案
- 院外溺水应急预案
- 旭霞营销方案
- 营销白板宣传方案
- 美甲店营销留客方案
- 栾树施工方案
- 科学计算语言Julia及MWORKS实践 课件 15-元编程
- 海南省海口市第十四中学联考2024-2025学年七年级上学期11月期中数学试题(含答案)
- 供暖合同协议2024年
- 内审检查表完整版本
- 3级人工智能训练师(高级)国家职业技能鉴定考试题及答案
- 光伏项目施工总进度计划表(含三级)
- DB32-T 4757-2024 连栋塑料薄膜温室建造技术规范
- 2024年休闲会所相关项目投资计划书
- 文件编号管理规范
- 2024年竞聘宁夏宁旅酒店集团有限公司招聘笔试参考题库含答案解析
- 2024年度医院泌尿外科医师述职报告课件
评论
0/150
提交评论