



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形的中位线创新案例教学 在我的教学工作中,我紧密联系教科书的同时,又会有所创新,我将和大家分享三角形的中位线的教学。三角形的中位线所要探究的三角形中位线定理是学生以前从未接触过的内容。因此,在教学中通过创设有趣的情境问题,激发学生的学习兴趣,注重新旧知识的联系,强调直观与抽象的结合,鼓励学生大胆猜想,大胆探索新颖独特的证明方法和思路,让学生充分经历“探索发现猜想证明”这一过程,体会合情推理与演绎推理在获得结论的过程中发挥的作用,同时渗透归纳、类比、转化等数学思想方法。通过本节课的学习,应使学生理解三角形中位线定理不仅指出了三角形的中位线与第三边的位置关系和数量关系,而且为证明线段之间的位置关系和数量关系(倍半关系)提供了新的思路,从而提高学生分析问题、解决问题的能力。而学生已经学习过有关平行四边形的性质和判定,所以我们要借助于平行四边形的有关知识进行探索和证明。在此过程中注重知识的迁移同时重点渗透转化、类比、归纳的数学思想方法,使学生的优势得以发挥,劣势得以改进,从而提高学生的整体水平。以下是我的教学过程:(一)教学目标1.知识目标(1)了解三角形中位线的概念。(2)掌握三角形中位线定理的证明和有关应用。2.能力目标(1) 经历“探索发现猜想证明”的过程,进一步发展推理论证能力。(2) 能够用多种方法证明三角形的中位线定理,体会在证明过程中所运用的归纳、类比、转化等数学思想方法。(3)能够应用三角形的中位线定理进行有关的论证和计算,逐步提高学生分析问题和解决问题的能力。3.情感目标通过学生动手操作、观察、实验、推理、猜想、论证等自主探索与合作交流的过程,激发学生的学习兴趣,让学生真正体验知识的发生和发展过程,培养学生的创新意识。(二)教学重点与难点教学重点:三角形中位线的概念与三角形中位线定理的证明.教学难点:三角形中位线定理的多种证明。(三)教学方法与学法指导对于三角形中位线定理的引入采用发现法,在教师的引导下,学生通过探索、猜测等自主探究的方法先获得结论再去证明。在此过程中,注重对证明思路的启发和数学思想方法的渗透,提倡证明方法的多样性,而对于定理的证明过程,则运用多媒体演示。(四)教具和学具的准备教具:多媒体、投影仪、三角形纸片、剪刀、常用画图工具。学具:三角形纸片、剪刀、刻度尺、量角器。(五)、 教学过程1.一道趣题课堂因你而和谐问题:你能将任意一个三角形分成四个全等的三角形吗?这四个全等三角形能拼凑成一个平行四边形吗?(板书)(这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来了。)学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形如图中,将ADE绕E点沿顺(逆)时针方向旋转180可得平行四边形ADFE。问题:你有办法验证吗?2.一种实验课堂因你而生动学生的验证方法较多,其中较为典型的方法如下:生1:沿DE、DF、EF将画在纸上的ABC剪开,看四个三角形能否重合。生2:分别测量四个三角形的三边长度,判断是否可利用“SSS”来判定三角形全等。生3:分别测量四个三角形对应的边及角,判断是否可用“SAS、ASA或AAS”判定全等。引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢?3.一种探索课堂因你而鲜活师:把连接三角形两边中点的线段叫做三角形的中位线(板书)问题:三角形的中位线与第三边有怎样的关系呢?在前面图1中你能发现什么结论呢?(学生的思维开始活跃起来,同学之间开始互相讨论,积极发言)学生的结果如下:DEBC,DFAC,EFAB,AE=EC,BF=FC,BD=AD, ADEDBFEFCDEF,DE=BC,DF=AC,EF=AB 猜想:三角形的中位线平行于第三边,且等于第三边的一半。(板书)师:如何证明这个猜想的命题呢?生:先将文字问题转化为几何问题然后证明。已知:DE是ABC的中位线,求证:DE/BC、DE=BC。学生思考后教师启发:要证明两条直线平行,可以利用“三线八角”的有关内容进行转化,而要证明一条线段的长等于另一条线段长度的一半,可采用将较短的线段延长一倍,或者截取较长线段的一半等方法进行转化归纳。(学生积极讨论,得出几种常用方法,大致思路如下)生1:延长DE到F使EF=DE,连接CF,由 可得AD FC生2:延长DE到F使DE=EF,连接AF、CF、CD,利用对角线互相平分的四边形ADCF是平行四边形,可得AD FC生3:将ADE绕E点沿顺(逆)时针方向旋转180,使得点A与点C重合,即 ADECFE,可得AD FC上面通过三种不同方法得出AD FC,再由AD=BD,得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .师:还有其它不同方法吗?(学生面面相觑,学生4举手发言)4.一种创新课堂因你而美丽生4:过点D作DF/BC交AC于点F ,则 ADFABC可得 E是AC中点所以 AE=AF即 E点与F点重合所以 DE/BC 且DE=BC(笔者事先只局限于思考利用平行四边形及三角形相似的性质解决问题,没想到学生的发言如此精彩,为整个课堂添加了不少亮色。)师:很好,好极了!这种证法在数学中叫做同一法,连老师也没想到。太棒了,大家要向生4学习,用变化的、动态的、创新的观点来看问题,努力去寻找更好更简捷的方法。5.一种思考课堂因你而添彩问题:三角形的中位线与中线有什么区别与联系呢?容易得出如下事实:都是三角形内部与边的中点有关的线段但中位线平行于第三边,且等于第三边的一半,三角形的一条中位线与第三边上的中线互相平分(学生交流、探索、思考、验证)6.一种照应课堂因你而完整问题:你能利用三角形中位线定理说明本节课开始提出的趣题的合理性吗?(学生争先恐后回答,课堂气氛活跃)7.一种应用课堂因你而升华做一做:任意一个四边形,将其四边的中点依次连接起来所得新四边形的形状有什么特征?(学生积极思考发言,师生共同完成此题目的最常见解法。)已知:四边形ABCD,点E、F、G、H分别是四边的中点,求证:四边形EFGH是平行四边形。证明:连结AC E、F分别是AB、BC的中点, EF是ABC的中位线, EFAC且EF=AC,同理可得:GHAC 且GH=AC,EFGH,四边形EFGH为平行四边形。(板书)其它解法由学生口述完成。8.一种引申课堂因你而让人回味无穷问题:如果将上例中的“任意四边形”改为“平行四边形、矩形、菱形、正方形”,结论又会怎么样呢?(学生作为作业完成。)9.一句总结课堂因你而彰显无穷魅力学生总结本节内容:三角形的中位线和三角形中位线定理。(另附作业)本节课以“如何将一个任意三角形分为四个全等的三角形”这一问题为出发点,以平行四边形的性质定理和判定定理为桥梁,探究了三角形中位线的基本性质和应用。在本节课中,学生亲身经历了“探索发现猜想证明”的探究过程,体会了证明的必要性和证明方法的多样性。在此过程中,笔者注重新旧知识的联系,同时强调转化、类比、归纳等数学思想方法的恰当应用,达到了预期的目的。本节课中学生的“同一法”给了我们很多的启示:虽然在平时的教学中,笔者也尽力放手让学生们探
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津外国语大学《数据挖掘导论》2024-2025学年第一学期期末试卷
- 南昌医学院《英语教师行动研究》2024-2025学年第一学期期末试卷
- 滇西科技师范学院《旅游规划与开发》2024-2025学年第一学期期末试卷
- 2025年水生植物类项目立项申请报告范文
- 湖南都市职业学院《非线性规划》2024-2025学年第一学期期末试卷
- 二零二五房地产抵押担保商业地产贷款合同
- 2025版生态修复项目后期养护服务合同
- 二零二五年酒店食堂餐饮管理承包合同样本
- 二零二五版单位旅游推广广告制作合同
- 二零二五版地铁隧道施工维修及监测服务协议
- 2018年山东中考语文现代文之说明文阅读10篇
- 本科病理生理学期末考试试卷 2023
- (中职) 化学分析技术11项目十一化学需氧量的测定教学课件
- GB/T 9871-2008硫化橡胶或热塑性橡胶老化性能的测定拉伸应力松弛试验
- GB/T 26480-2011阀门的检验和试验
- GB/T 19861-2005丙烯酸系阴离子交换树脂强碱基团、弱碱基团和弱酸基团交换容量测定方法
- GB/T 11085-1989散装液态石油产品损耗
- GB 30000.3-2013化学品分类和标签规范第3部分:易燃气体
- (完整版)沪教牛津版小学一至六年级英语单词汇总(最新)
- JJF 1587-2016 数字多用表校准规范-(高清现行)
- 完整课件-西方经济学下册(第二版)
评论
0/150
提交评论