混凝土课后思考题.docx_第1页
混凝土课后思考题.docx_第2页
混凝土课后思考题.docx_第3页
混凝土课后思考题.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5.1 轴心受压普通箍筋短柱的破坏形态是随着荷载的增加,柱中开始出现微细裂缝,在临近破坏荷载时,柱四周出现明显的纵向裂缝,箍筋间的纵筋发生压屈,向外凸出,混凝土被压碎,柱子即告破坏。而长柱破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。稳定系数来表示长柱承载力的降低程度,即,和分别为长柱和短柱的承载力破坏。5.2 轴心受压普通箍筋柱的正截面受压承载力计算公式为: 轴心受压螺旋箍筋柱的正截面受压承载力计算公式为:5.3 纵筋 柱中直径不宜小于12mm;全部纵向钢筋的配筋率不宜大于5%;全部纵向钢筋配筋率不应小于最凶啊配筋百分率,且截面一侧纵向钢筋配筋率不应小于0.2% 箍筋 为了能箍住纵筋,防止纵筋圧曲,柱及其他受压构件中的周边箍筋应做成封闭式;其间距在绑扎骨架中不应大于15d(纵筋最小直径)且不应大于400mm,也不大于构件横截面的短柱尺寸,箍筋直径不应小于d/4(纵筋最大直径),且不应小于6mm5.4 偏心受压短柱破坏形态:混凝土先被压碎,远侧钢筋可能受拉也可能受压,但都未达到受拉屈服,属于脆性破坏 偏心受压构件按受力情况可分为单向偏心受压构件和双向偏心受压构件;按破坏形态可分为大偏心受压构件和小偏心受压构件;按长细比可分为短柱、长柱和细长柱。5.5偏心受压长柱的正截面受压破坏有两种形态,当柱长细比很大时,构件的破坏不是由于材料引起的,而是由于构件纵向弯曲失去平衡引起的,称为“失稳破坏”,它不同于短柱所发生的“材料破坏”;当柱长细比在一定范围内时,虽然在承受偏心受压荷载后,偏心距由ei增加到eif,使柱的承载能力比同样截面的短柱减小,但就其破坏本质来讲,与短柱破坏相同,均属于“材料破坏”,即为截面材料强度耗尽的破坏。轴心受压长柱所承受的轴向压力N与其纵向弯曲后产生的侧向最大挠度值f的乘积就是偏心受压长柱由纵向弯曲引起的最大的二阶弯矩,简称二阶弯矩。5.7大、小偏心受压破坏的界限破坏形态即称为“界限破坏”,其主要特征是:受拉纵筋应力达到屈服强度的同时,受压区边缘混凝土达到了极限压应变。相应于界限破坏形态的相对受压区高度设为,则当时属大偏心受压破坏形态,当时属小偏心受压破坏形态。13.偏心受压构件正截面承载力NuMu的相关曲线是指偏心受压构件正截面的受压承载力设计值Nu与正截面的受弯承载力设计值Mu之间的关系曲线。6.3小偏心受拉构件在临破坏前,一般情况是截面全部裂通,拉力完全由钢筋承担。计算时,可假定构件破坏时钢筋As及的应力都达到屈服强度,根据内外力分别对钢筋As及的合力点取矩的平衡条件,即得到小偏心受拉构件的正截面承载力计算公式,依次公式即可计算出所需的钢筋As及的截面面积。6.4由于大偏心受拉构件的截面受力情况与双筋矩形截面受弯构件的受力情况非常接近(除了大偏心受拉构件截面上作用的是一个偏心拉力N,而受弯构件截面上作用的是一个弯矩M之外),二者的破坏特征相类似,且大偏心受拉构件在界限破坏时也是受拉钢筋应力达到屈服强度fy的同时受压区边缘混凝土达到极限压应变,与受弯构件的界限破坏情形完全相同。因此,大偏心受拉构件的界限相对受压区高度也可按受弯构件的界限相对受压区高度公式:(有明显屈服点的钢筋)和 (无明显屈服点的钢筋)来计算,故大偏心受拉构件的xb取与受弯构件相同。6.5偏心受拉构件的斜截面受剪承载力Vu等于混凝土和箍筋承担的剪力Vcs扣掉轴向拉力的不利作用,而偏心受压构件的斜截面承载力Vu等于混凝土和箍筋承担的剪力Vcs加上轴向压力的有利作用。这是因为轴向拉力的存在有时会使斜裂缝贯穿全截面,导致偏心受拉构件的斜截面受剪承载力比无轴向拉力时要降低一些。而轴向压力的存在则能推迟垂直裂缝的出现,并使裂缝宽度减小,从而使得偏心受压构件的斜截面受剪承载力比无轴向压力时要高一些,但有一定限度,当轴压比N/fcbh0.30.5时,再增加轴向压力就将转变为带有斜裂缝的小偏心受压的破坏情况,斜截面受剪承载力达到最大值,因此,在计算偏心受压构件的斜截面受剪承载力时,注意当轴向压力N0.3fcA时,取N0.3fcA,A为构件的截面面积。7.5为满足受扭构件受扭承载力计算和构造规定要求,配置受扭纵筋应注意以下问题:1)受扭纵筋的最小配筋率应取为:,式中当时,取2;2)受扭纵筋的间距不应大于200mm和梁的截面宽度;3)在截面四周必须设置受扭纵筋,其余纵筋沿截面周边均匀对称布置;4)当支座边作用有较大扭矩时,受扭纵筋应按受拉钢筋锚固在支座累;5)在弯剪扭构件中,弯曲受拉边纵向受拉钢筋的最小配筋量,不应小于按弯曲受拉钢筋最小配筋率计算出的钢筋截面面积,与按受扭纵向受力钢筋最小配筋率计算并分配到弯曲受拉边钢筋截面面积之和。配置受剪扭箍筋应注意以下问题:1)受剪扭箍筋的配筋率不应小于0.28ftfyv,即:;2)箍筋必须做成封闭式,且应沿截面周边布置;3)当采用复合箍筋时,位于截面内部的箍筋不应计入;4)受扭所需箍筋的末端应做成135弯钩,弯钩端头平直段长度不应小于10d(d为箍筋直径)。8.5当钢筋混凝土受弯构件受拉区外边缘混凝土在最薄弱的截面处达到其极限拉应变值后,就会出现第一批裂缝。当裂缝出现瞬间,裂缝处的受拉混凝土退出工作,应力降至零,于是钢筋承担的拉力突然增加。混凝土一开裂,张紧的混凝土就像剪断了的橡皮筋那样向裂缝两侧回缩,但这种回缩受到了钢筋的约束,直到被阻止。在回缩的那一段长度l中,混凝土与钢筋之间有相对滑移,产生粘结应力,通过粘结应力的作用,随着离裂缝截面距离的增大,钢筋拉应力逐渐传递给混凝土而减小,混凝土拉应力由裂缝处的零逐渐增大,达到l后,粘结应力消失,混凝土和钢筋又具有相同的拉伸应变,各自的应力又趋于均匀分布。第一批裂缝出现后,在粘结应力继续增大时,就有可能在离裂缝截面l的另一薄弱截面处出现新裂缝。按此规律,随着弯矩的增大,裂缝将逐条出现,当截面弯矩达到0.50.7时,裂缝将基本“出齐”,即裂缝的分布处于稳定状态。此时,在两条裂缝之间,混凝土拉应力将小于实际混凝土抗拉强度,即不足以产生新的裂缝。因此,从理论上讲,裂缝间距在l2l范围内,裂缝间距即趋于稳定,故平均裂缝间距应为1.5l。由以上试验分析可见,裂缝的开展是由于混凝土的回缩,钢筋的伸长,导致混凝土与钢筋之间不断产生相对滑移的结果。8.6最大裂缝宽度计算公式的建立过程为:首先,由理论分析推导出平均裂缝间距表达式和平均裂缝宽度表达式;然后,最大裂缝宽度由平均裂缝宽度乘以“扩大系数”得到,即在荷载的标准组合作用下的最大裂缝宽度由平均裂缝宽度乘以扩大系数,在荷载长期作用下的最大裂缝宽度(也就是验算时的最大裂缝宽度)再由乘以荷载长期作用下的扩大系数得到,即:最后,根据试验结果,将平均裂缝宽度的表达式代入及将相关的各种系数归并后,得到混凝土结构设计规范中规定的最大裂缝宽度计算公式。由于影响结构耐久性和建筑观感的是裂缝的最大开展宽度,而不是裂缝宽度的平均值,因此,应将前者作为评价指标,要求最大裂缝宽度的计算值不超过规范规定的允许值。但注意,由规范给出的最大裂缝宽度公式计算出的值,并不就是绝对最大值,而是具有95保证率的相对最大裂缝宽度。8.7在适筋范围内,当梁的尺寸和材料性能给定时,配筋率越高,受弯构件正截面承载力越大,最大裂缝宽度值越小,但配筋率的提高对减小挠度的效果不明显。受弯构件在满足了正截面承载力要求的前提下,还必须满足挠度验算要求和裂缝宽度验算要求。若此时不满足挠度验算要求,不能盲目地用增大配筋率的方法来解决,可以采用增大截面有效高度h0或施加预应力或采用T形或I形截面的方法来处理挠度不满足的问题。若满足了挠度验算的要求,而不满足裂缝宽度验算的要求,则可采用施加预应力或在保证配筋率变化不大的情况下减小钢筋直径和采用变形钢筋的方法来解决,必要时可适当增加配筋率。8.8在挠度验算公式中,受弯构件挠度计算采用的刚度B,是在短期刚度Bs的基础上,用荷载效应的准永久组合对挠度增大的影响系数来考虑荷载效应的准永久组合作用的影响,即荷载长期作用部分的影响。且短期刚度Bs又是采用荷载效应的标准组合值计算的,因此,最后所得的刚度B即为按荷载效应的标准组合并考虑荷载长期作用影响的刚度。在裂缝验算公式中,最大裂缝宽度值是由平均裂缝宽度乘以荷载标准组合下的扩大系数和荷载长期作用下的扩大系数得到的。其中,扩大系数考虑了在一定荷载标准组合下裂缝宽度的不均匀性的情况,而扩大系数则考虑了在荷载长期作用下,裂缝宽度随时间而增大的情况。且平均裂缝宽度又是采用荷载效应的标准组合值计算的,因此,最后所得的长期荷载作用下的最大裂缝宽度即为按荷载效应的标准组合并考虑荷载长期作用影响的最大裂缝宽度值。8.9混凝土结构、构件或截面的延性是指从屈服开始至达到最大承载能力或达到以后而承载力还没有显著下降期间的变形能力。延性通常是用延性系数来表达,受弯构件截面曲率延性系数表达式为: 影响受弯构件的截面曲率延性系数的主要因素是纵向钢筋配筋率、混凝土极限压应变、钢筋屈服强度及混凝土强度等,这些影响因素可以归纳为两个综合因素,即极限压应变以及受压区高度kh0和xa。影响偏心受压构件截面曲率延性系数的两个综合因素是和受弯构件相同的,除此之外,偏心受压构件的轴压比和配箍率对其截面曲率延性系数的影响较大。8.10影响混凝土结构耐久性的因素主要有内部和外部两个方面。内部因素主要有混凝土的强度、密实性、水泥用量、水灰比、氯离子及碱含量、外加剂用量、保护层厚度等;外部因素则主要是环境条件,包括温度、湿度、CO2含量、侵蚀性介质等。出现耐久性能下降的问题,往往是内、外部因素综合作用的结果。此外,设计不同、施工质量差或使用中维修不当等也会影响耐久性能。耐久性概念设计的目的是在规定的设计使用年限内,在正常维护下,必须保持适合于使用,满足既定功能的要求。设计的基本原则是根据结构的环境类别和设计使用年限进行设计。因此,为保证混凝土结构的耐久性,应根据环境类别和设计使用年限,针对影响耐久性的主要因素,从结构设计、对混凝土材料的要求、施工要求及混凝土保护层最小厚度等方面提出技术措施,并采取有效的构造措施。8.11确定混凝土保护层最小厚度时,主要考虑保证钢筋与混凝土共同工作,满足对受力钢筋的有效锚固以及保证耐久性的要求等因素。对于处于一类环境中的构件,混凝土保护层最小厚度主要是从保证有效锚固及耐火性的要求加以确定;对于处于二、三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论