数学华东师大版七年级下册用正多边形铺地面_第1页
数学华东师大版七年级下册用正多边形铺地面_第2页
数学华东师大版七年级下册用正多边形铺地面_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

七年级用正多边形铺设地面教案学习目标:1、通过用相同的正多边形拼地板活动,巩固多边形内角和与外角和公式;2、通过“拼地板”和有关计算,使学生从中发现能拼成一个不留空隙,又不重叠的平面图形的关键是围绕同一顶点的几个多边形的内角相加等于3600。3、使学生进一步认识到图形在日常生活中的应用。重点:通过操作使学生发现能拼成一个平面图形的关键是什么。问题导学: 随着人们生活水平的提高,很多家庭都铺上了瓷砖,这在数学上是一门学问,叫做平面镶嵌。即用单一平面图形拼合在一起覆盖一个平面,而图形间没有空隙,也没有重叠。这种用形状相同或不同的平面封闭图形,把一块地面无缝隙、又不重叠地全部覆盖,在几何里叫做平面镶嵌。其实本章的开头已提出了瓷砖的铺设问题,今天我们进一步来探究用什么样的多边形能拼成一个既不留下空白,又不互相重叠的平面图形,即用什么样的正多边形可以完全镶嵌一个平面? ppt 1-4自主学习: Ppt 51、什么叫正多边形? 2、多边形的内角和公式是什么?正n边形的内角怎么表示?外角和公式是什么?教师点拨 ppt 6在学生练习的基础上,借助多媒体演示合作交流: ppt 7一、动手操作(小组合作,并讨论交流)请每个学习小组围圈而坐,拿出各自准备好的各种正多边形纸片,并按照下列顺序进行操作:、只用正三角形,看能否完全镶嵌桌面?、只用正方形,看能否完全镶嵌桌面?、只用正五边形,看能否完全镶嵌桌面?、只用正六边形,看是否能完全镶嵌桌面? 设问1:同学们通过亲手操作,发现哪些正多边形可以完全镶嵌桌面呢?设问2:为什么有些正多边形可以镶嵌平面,而有一些却不能,问题的关键在哪儿呢?(围绕一点拼在一起的正多边形的内角相加恰好等于3600 。)ppt 8-12检查展示:可以让具有代表性的小组展示自己的作品二、计算验证 ppt 13通过计算验证哪些正多边形可以镶嵌平面?根据上述设问2的答案,我们可以通过计算来判定哪些正多边形可以镶嵌平面,下面请大家动手计算(可以使用计算器),然后填写课本89页表格:正多边形的边数34567n正多边形内角和每个内角的度数能否镶嵌平面能能不能能不能得出结论 围绕同一顶点的几个多边形的内角相加等于3600 ppt 14-18三、小结: ppt 19-20同一种正多边形能进行平面镶嵌的关键是什么?对于任一种正多边形,如何判定它能否进行平面镶嵌?四、课后作业:1课本习题2合作探究下列问题(为下一课时做准备):能否用两种

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论