




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数的图像和性质课 题三角函数的图像和性质学情分析三角函数的图象与性质是三角函数的重要内容,学生刚刚刚学到,对好多概念还不很清楚,理解也不够透彻,需要及时加强巩固。教学目标与 考点分析1掌握三角函数的图象及其性质在图象交换中的应用;2掌握三角函数的图象及其性质在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中的应用 教学重点三角函数图象与性质的应用是本节课的重点。教学方法导入法、讲授法、归纳总结法基础梳理1“五点法”描图(1)ysin x的图象在0,2上的五个关键点的坐标为(0,0),(,0),(2,0)(2)ycos x的图象在0,2上的五个关键点的坐标为(0,1),(,1),(2,1)2三角函数的图象和性质函数性质ysin xycos xytan x定义域RRx|xk,kZ图象值域1,11,1R对称性对称轴:xk(kZ)对称中心:(k,0)(kZ)对称轴:xk(kZ)对称中心:无对称轴对称中心:周期22单调性单调增区间;单调减区间单调增区间2k,2k(kZ);单调减区间2k,2k(kZ)单调增区间奇偶性奇偶奇两条性质(1)周期性函数yAsin(x)和yAcos(x)的最小正周期为,ytan(x)的最小正周期为.(2)奇偶性三角函数中奇函数一般可化为yAsin x或yAtan x,而偶函数一般可化为yAcos xb的形式三种方法求三角函数值域(最值)的方法:(1)利用sin x、cos x的有界性;(2)形式复杂的函数应化为yAsin(x)k的形式逐步分析x的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题双基自测1函数,xR()A是奇函数B是偶函数C既不是奇函数也不是偶函数D既是奇函数又是偶函数2函数的定义域为()A BC D3的图象的一个对称中心是()A(,0) BC D4 函数f(x)cos的最小正周期为_考向一三角函数的周期【例1】求下列函数的周期:(1);(2)考向二三角函数的定义域与值域(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解(2)求解三角函数的值域(最值)常见到以下几种类型的题目:形如yasin2xbsin xc的三角函数,可先设sin xt,化为关于t的二次函数求值域(最值);形如yasin xcos xb(sin xcos x)c的三角函数,可先设tsin xcos x,化为关于t的二次函数求值域(最值)【例2】(1)求函数ylg sin 2x的定义域(2)求函数ycos2xsin x的最大值与最小值【训练2】 (1)求函数y的定义域;(2) 的定义域 (3)已知的定义域为,求的定义域.考向三三角函数的单调性求形如yAsin(x)k的单调区间时,只需把x看作一个整体代入ysin x的相应单调区间内即可,若为负则要先把化为正数【例3】求下列函数的单调递增区间(1),(2),(3).【训练3】 函数f(x)sin的单调减区间为_考向四三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用【例4】(1)函数ycos图象的对称轴方程可能是()Ax Bx Cx Dx(2)若0,是偶函数,则的值为_【训练4】 (1)函数y2sin(3x)的一条对称轴为x,则_.(2)函数ycos(3x)的图象关于原点成中心对称图形则_.难点突破利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合【示例】 已知函数f(x)sin(0)的单调递增区间为(kZ),单调递减区间为(kZ),则的值为_练一练:1、 已知函数(1)判断函数的奇偶性;(2)判断函数的对称性2、设函数的图象的一条对称轴是直线,则_课后练习:三角函数的图象与性质练习题一、选择题(1)下列各命题中正确的是 (2)下列四个命题中,正确的是 A函数y=ctgx在整个定义域内是减函数By=sinx和y=cosx在第二象限都是增函数C函数y=cos(-x)的单调递减区间是(2k-,2k)(kZ)(3)下列命题中,不正确的是 D函数y=sin|x|是周期函数(4)下列函数中,非奇非偶的函数是 (5)给出下列命题:函数y=-1-4sinx-sin2x的最大值是2函数f(x)=a+bcosx(aR且bR-)的最大值是a-b以上命题中正确命题的个数是 A1 B2C3 D4 AsincostgBcostgsinCsintgcosDtgsincos(7)设x为第二象限角,则必有 二、填空题(9)函数y=sinx+sin|x|的值域是_的值是_(11)设函数f(x)=arctgx的图象沿x轴正方向平移2个单位,所得到的图象为C,又设图象C1与C关于原点对称,那么C1所对应的函数是_(12)给出下列命题:存在实数,使sincos=1若,是第一象限角,则tgtg其中正确命题的序号是_三、解答题(14)已知函数y=cos2x+asinx-a2+2a+5有最大值2,试求实数a的值答案与提示一、(1)B(2)D (3)D(4)B(5)D(6)D(7)A(8)D提示(2)y=ctgx在(k,k+)(kZ)内是单调递减函数y=cos(-x)=cosx在2k-,2k(kZ)上是增函数,而在2k,2k+上是减函数(3)可画出y=sin |x|图象验证它不是周期函数或利用定义证之(5)=-y(sinx+2)2+3 sinx=-1时,ymax=2当cosx=-1时,f(x)max=a-bcossin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技术开发项目需求规格书模版
- 房地产融资框架合同
- 技术部门需求调研模板技术创新引导版
- 《肝硬化中西医结合诊疗指南(2023版)》全面解读 2
- 2025资产抵押合同
- 2025浓缩混凝土购销合同
- 厂区安全知识培训心得
- 大隐静脉曲张护理查房课件
- 2025宽带互联网接入服务合同
- 2025照明设备供应合同标准范本
- 医院感染预防与控制标准规范知识考试题库(含答案)
- 认识有理数(第1课时)课件 2025-2026学年北师大版(2024)七年级数学上册
- 二级豆粕创新创业项目商业计划书
- (统编2025版)道德与法治一年级上册教学计划(新教材)
- 2025云南昆明巫家坝建设发展有限责任公司招聘23人笔试备考题库及答案解析
- 2025北京事业单位考试试题及答案
- 2025年电气工程师高级专业考试题库
- 2024年山东省节能与双碳促进中心招聘真题
- KTV突发事件安全应急预案
- DB15T 3543-2024 大蒜主要病虫害绿色防控技术规程
- 《液压与气动》课件(共十三章)
评论
0/150
提交评论