

全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
裂项相消法数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。适用于类似(其中是各项不为零的等差数列,为常数)的数列、部分无理数列等。用裂项相消法求和,需要掌握一些常见的裂项方法:(1),特别地当时,(2),特别地当时例1、数列的通项公式为,求它的前n项和解: = 小结:裂项相消法求和的关键是数列的通项可以分解成两项的差,且这两项是同一数列的相邻两项,即这两项的结构应一致,并且消项时前后所剩的项数相同.针对训练、求数列的前n项和.例题2:(2015安徽,18,12分)已知数列an是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列an的通项公式;(2)设Sn为数列an的前n项和,bn=,求数列bn的前n项和Tn.(1)由题设知a1a4=a2a3=8,又a1+a4=9,可解得或(舍去).由a4=a1q3得公比为q=2,故an=a1qn-1=2n-1.(2)Sn=2n-1,又bn=-,所以Tn=b1+b2+bn=+=-=1-.例三:等差数列的公差为,且成等比数列()求数列的通项公式;()设,求数列的前项和解:(),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省2025年下半年海船船员适任考试和评估计划船舶结构与货运综合练习题及答案
- 慢性舌扁桃体炎合并吞咽困难护理查房
- 阿拉尔市2025-2026学年八年级下学期语文期末模拟试卷
- 安徽省亳州市涡阳县2023-2024学年高一上学期期末考试历史试卷及答案
- 社区街道消防课件
- 内科细节管理-推进护理服务
- 社区电动车安全知识培训课件
- 浙江省嘉兴市2024-2025学年高一上学期期末检测生物试卷(含答案)
- 贵州省贵阳市花溪区燕楼中学2024-2025学年七年级下学期6月质量监测数学试卷(含部分答案)
- 车间水暖安装合同范本
- 留疆战士考试题库及答案
- 赏识你的学生
- 心衰病患者护理查房课件
- TSG11-2020 锅炉安全技术规程
- 哲学导论(完整版)
- 合成孔径雷达
- 四年级上册可爱的榆林全册教案
- 金属封闭母线
- 北师大版数学四年级下册全册教案设计
- 汉语拼音发音表(适合初学者和老年人)
- 购物中心商场商户促销活动管理制度
评论
0/150
提交评论