二次函数的图象与各项系数之间的关系.doc_第1页
二次函数的图象与各项系数之间的关系.doc_第2页
二次函数的图象与各项系数之间的关系.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数的图象与各项系数之间的关系姓名_ 组号_一、知识基础 1. 二次项系数二次函数中,作为二次项系数,显然 当时,抛物线开口向上, 当时,抛物线开口向下,的值越大,函数图象越靠近y轴,开口越小,反之的值越小,函数图象越远离y轴,开口越大;一次函数图象有类似特点。总结:决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小2. 一次项系数 在二次项系数确定的前提下,决定了抛物线的对称轴 在的前提下,当时,即抛物线的对称轴在轴左侧;当时,即抛物线的对称轴就是轴;当时,即抛物线对称轴在轴的右侧 在的前提下,结论刚好与上述相反,即当时,即抛物线的对称轴在轴右侧;当时,即抛物线的对称轴就是轴;当时,即抛物线对称轴在轴的左侧总结:在确定的前提下,决定了抛物线对称轴的位置的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异” 3. 常数项 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正; 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为; 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负 总结:决定了抛物线与轴交点的位置 总之,只要都确定,那么这条抛物线就是唯一确定的4当x=1时,可以求出a+b+c的值; 若x=1时,y0,则a+b+c0; 若x=1时,y0,则a+b+c0,则a-b+c0; 若x=-1时,y0,则a-b+c0时,方程=0有两个根,也就是说y=0时,函数在x轴上可以找到2个对应的自变量值,即断抛物线与x轴有2个交点;同理b2-4ac=0,二次函数图象与x轴有一个交点;b2-4ac 0时,抛物线与x轴没有交点。二、精典练习1(烟台市中考题)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=1,且过点(3,0)下列说法:abc0;2ab=0;4a+2b+c0;若(5,y1),(,y2)是抛物线上两点,则y1y2其中说法正确的是()ABCD2、如图,二次函数y=ax2+bx+c(a0)的图象的顶点在第一象限,且过点(0,1)和(1,0)下列结论:ab0,b24

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论