



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二文科数学过关检测导学案(选修1-1第三章)主备人:黄伟 使用时间:2012-02-18 导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。一、知识点梳理(1) 平均变化率:对于一般的函数,在自变量从变化到的过程中,若设, 则函数的平均变化率为 (2)导数的概念一般的,定义在区间(,)上的函数,当无限趋近于0时,无限趋近于一个固定的常数A,则称在处可导,并称A为在处的导数,记作或(3)导数的几何意义 函数y=f(x)在x=x0处的导数等于在该点处的切线的 。基本初等函数的导数公式表及求导法则(默写)(5)函数单调性与导数:在某个区间内,如果,那么函数在这个区间内 ;如果,那么函数在这个区间内 说明:(1)特别的,如果,那么函数在这个区间内是常函数(6)求解函数单调区间的步骤:(7)求可导函数f(x)的极值的步骤: (1)确定函数的定义区间,求导数f(x) (2)求方程f(x)=0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值(8)函数的最值与导数:一般地,在闭区间上函数的图像是一条连续不断的曲线,那么函数在上必有 二、典型例题1、曲线y在点(1,1)处的切线方程为()Ayx2 By3x2 Cy2x3 Dy2x12、函数在区间 ( ) (A) 上单调递减 (B) 上单调递减 (C) 上单调递减 (D) 上单调递增3、若函数在处有极大值,则常数的值为_;4、函数的一个单调递增区间是 ( )(A) (B) (C) (D) 5、函数的极值是 6、已知函数yf(x)的导函数yf(x)的图象如下,则() A函数f(x)有1个极大值点,1个极小值点B函数f(x)有2个极大值点,2个极小值点C函数f(x)有3个极大值点,1个极小值点D函数f(x)有1个极大值点,3个极小值点7、已知在时取得极值,且、试求常数a、b、c的值;、试判断是函数的极小值点还是极大值点,并说明理由三、练习1、(基础题)设y8x2lnx,则此函数在区间(0,)和(,1)内分别()A单调递增,单调递减 B单调递增,单调递增C单调递减,单调递增 D单调递减,单调递减2、(基础题)函数y=x2(x3)的减区间是 3、(基础题)函数的极大值为6,极小值为2,()求实数的值. ()求的单调区间.4、(基础题)已知函数yf(x).(1)求函数yf(x)的图象在x处的切线方程;(2)求yf(x)的最大值;(3)设实数a0,求函数F(x)af(x)在a,2a上的最小值(选做)5、(基础题)设f(x)=x32x+5.(1)求f(x)的单调区间;(2)当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4 水葫芦的生长教学设计-2025-2026学年沪教版2020选择性必修第三册-沪教版2020
- 2023七年级数学下册 第10章 相交线、平行线与平移10.1 相交线第1课时 对顶角说课稿 (新版)沪科版
- 第16课 公益动画短片制作说课稿-2025-2026学年初中信息技术滇人版2016八年级上册-滇人版2016
- 2025年中考物理试题分类汇编(全国)电与磁(第1期)解析版
- 2走月亮(教学设计)-2024-2025学年语文四年级上册统编版
- 小学科学新教科版二年级上册全册教案(2025秋版)
- Unit2 Ways to go to school PartA Let's learn(教学设计)-2024-2025学年人教PEP版英语六年级上册
- 1《场景歌》(教学设计)-2024-2025学年统编版语文二年级上册
- 人教版小学数学五年级下册《因数与倍数》单元测试卷3套含答案
- 2025年北京高考化学试题+答案
- 2025年海南省通信网络技术保障中心招聘考试笔试试题(含答案)
- 2025至2030中国PE微粉蜡市场需求量预测及前景动态研究报告
- 2025年理赔专业技术职务任职资格考试(理赔员·保险基础知识)历年参考题库含答案详解(5套)
- TSGD7002-2023-压力管道元件型式试验规则
- 静配中心细胞毒性药物的配置方法
- 短视频制作实战课件
- 面试礼仪与求职技巧讲义
- 严重创伤的急诊管理课件
- 江西省普通高中学生综合素质评价手册
- 急性阑尾炎【普外科】-课件
- 文化人类学课件完整版
评论
0/150
提交评论