《合情推理与演绎推理》教案.doc_第1页
《合情推理与演绎推理》教案.doc_第2页
《合情推理与演绎推理》教案.doc_第3页
《合情推理与演绎推理》教案.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档选修2-2 2.1 合情推理与演绎推理(3课时)第一课时 2.1.1 合情推理(一)教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.教学重点:能利用归纳进行简单的推理.教学难点:用归纳进行推理,作出猜想.教学过程:.三、巩固练习:1. 练习:教材P87 1、2题. 2. 作业:教材P93 习题A组 1、2、3题.第二课时 2.1.1 合情推理(二)教学要求:结合已学过的数学实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用.教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理.教学难点:用归纳和类比进行推理,作出猜想.教学过程:二、讲授新课:1. 教学概念: 概念:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理. 简言之,类比推理是由特殊到特殊的推理. 类比练习:(i)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径. 由此结论如何类比到球体?(ii)平面内不共线的三点确定一个圆,由此结论如何类比得到空间的结论?(iii)由圆的一些特征,类比得到球体的相应特征. (教材P81 探究 填表) 小结:平面空间,圆球,线面. 讨论:以平面向量为基础学习空间向量,试举例其中的一些类比思维.2. 教学例题: 出示例1:类比实数的加法和乘法,列出它们相似的运算性质. (得到如下表格)类比角度实数的加法实数的乘法运算结果若a,b属于R则a+b属于R若a,b属于R则ab属于R运算律a+b=b+a(a+b)+c=a+(b+c)ab=ba(ab)c=a(bc)逆运算加法的逆运算是减法,使得方程a+x=0有唯一解x=-a乘法的逆运算是除法,使得方程ax=1有唯一解x=1/a单位元a+0=0a*1=1三、巩固练习:1. 练习:教材P87 3题. 2. 探究:教材P84 例4 3.作业:P93 4、5题.第三课时 2.1.2 演绎推理教学要求:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。.教学重点:了解演绎推理的含义,能利用“三段论”进行简单的推理.教学难点:分析证明过程中包含的“三段论”形式.教学过程:一、复习准备:二、讲授新课:1. 教学概念: 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。 要点:由一般到特殊的推理。 讨论:演绎推理与合情推理有什么区别?合情推理:归纳与类比;演绎推理:由一般到特殊. 提问:观察教材P88引例,它们都由几部分组成,各部分有什么特点?所有的金属都导电 铜是金属 铜能导电已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断大前提 小前提 结论“三段论”是演绎推理的一般模式:第一段:大前提已知的一般原理;第二段:小前提所研究的特殊情况;第三段:结论根据一般原理,对特殊情况做出的判断. 举例:举出一些用“三段论”推理的例子.2. 教学例题:三、巩固练习:1. 练习:P91 2、3题 2. 探究:P91 阅读与思考 3.作业:P93

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论