22.1.3.3二次函数y=a(x-h)2+k的图象和性质.doc_第1页
22.1.3.3二次函数y=a(x-h)2+k的图象和性质.doc_第2页
22.1.3.3二次函数y=a(x-h)2+k的图象和性质.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

22.1.3 二次函数y=a(xh)2k的图象和性质教学目标:知识与技能:1使学生理解函数y=a(xh)2k的图象与函数y=ax2的图象之间的关系。2会确定函数y=a(xh)2k的图象的开口方向、对称轴和顶点坐标。过程与方法:让学生经历函数y=a(xh)2k性质的探索过程,理解函数y=a(xh)2k的性质。情感态度与价值观:让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要。教学重难点:重点:理解函数y=a(xh)2k的性质以及图象与y=ax2的图象之间的关系。难点:正确理解函数y=a(xh)2k的图象与函数y=ax2的图象之间的关系以及函数y=a(xh)2k的性质。教学过程:一、提出问题,导入新课1函数y=2x21的图象与函数y=2x2的图象有什么关系? (函数y=2x21的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)2函数y=2(x1)21图象与函数y=2(x1)2图象有什么关系?函数y=2(x1)21有哪些性质?这就是本节要学习得内容。二、学习新知1、画图:在同一直角坐标系中画出函数y=2(x1)2与y=2x2 y=2(x1)21的图象,看看它们之间有何的关系? 在学生画函数图象时,教师巡视指导;例3:你能发现函数y=2(x1)21有哪些性质?教师可组织学生分组讨论,互相交流,让各组代表发言,函数y2(x1)21的图象可以看成是将函数y=2(x1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。当x1时,函数值y随x的增大而减小,当x1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。课堂练习:不画图像说说函数y=2(x1)22与y=2(x1)2的异同点三、小结1通过本节课的学习,你学到了哪些知识?还存在什么困惑?2谈谈你的学习体会。四、作业: 1巳知函数yx2、yx21和y(x1)21(1)在同一直角坐标系中画出三个函数的图象; (2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明:分别通过怎样的平移,可以由抛物线yx2得到抛物线yx21和抛物线y(x1)21;思考:函数y2(x1)2k的图象与函数y2x2的图象有什么关系?五、板书:22.1.3二次函数Y=a (X-h)2+k的图象a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论