




已阅读5页,还剩71页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章高斯投影和导线测量算例 一 高斯投影概述 正形投影 高斯坐标正反算及换带计算 二 把椭球面元素归算到高斯投影面 方向改化 距离改化 三 各种投影方法概述四 工程测量投影面与投影带选择的概念 本章提要 本章介绍从椭球面上大地坐标系到平面上直角坐标系的正形投影过程 研究如何将大地坐标 大地线长度和方向以及大地方位角等向平面转化的问题 重点讲述高斯投影的原理和方法 解决由球面到平面的换算问题 解决相邻带的坐标坐标换算 讨论在工程应用中 工程测量投影面与投影带选择 知识点及学习要求 1 高斯投影的基本概念 2 正形投影的一般条件 3 高斯平面直角坐标与大地坐标的相互转换 高斯投影的正算与反算4 椭球面上观测成果归化到高斯平面上的计算 5 高斯投影的邻带换算 8 工程测量投影面与投影带的选择 难点 在对本章的学习中 首先要理解和掌握高斯投影的概念 高斯正算和反算计算 方向改化和距离改化计算 高斯投影带的换算与应用 工程测量中投影面与投影带的选择 1 控制测量对地图投影的要求 1 等角投影 又称正形投影 2 长度和面积变形不大 并能用简单公式计算由变形而引起的改正数 3 能很方便地按分带进行 并能按高精度的 简单的 同样的计算公式和用表把各带联成整体 8 1高斯投影概述 重点 高斯投影是等角横切椭圆柱投影 高斯投影是一种等角投影 它是由德国数学家高斯 Gauss 1777 1855 提出 后经德国大地测量学家克吕格 Kruger 1857 1923 加以补充完善 故又称 高斯 克吕格投影 简称 高斯投影 2 高斯投影的基本概念 N S c 中央 子 午线 赤道 1 高斯投影的原理 高斯投影采用分带投影 将椭球面按一定经差分带 分别进行投影 2 高斯投影必须满足 1 高斯投影为正形投影 即等角投影 2 中央子午线投影后为直线 且为投影的对称轴 3 中央子午线投影后长度不变 3 高斯投影的特点 1 中央子午线投影后为直线 且长度不变 2 除中央子午线外 其余子午线的投影均为凹向中央子午线的曲线 并以中央子午线为对称轴 投影后有长度变形 3 赤道线投影后为直线 但有长度变形 4 除赤道外的其余纬线 投影后为凸向赤道的曲线 并以赤道为对称轴 5 经线与纬线投影后仍然保持正交 6 所有长度变形的线段 其长度变形比均大于l 7 离中央子午线愈远 长度变形愈大 4 投影带的划分 我国规定按经差6 和3 进行投影分带 6 带自首子午线开始 按6 的经差自西向东分成60个带 3 带自1 5 开始 按3 的经差自西向东分成120个带 高斯投影带划分 6 带与3 带中央子午线之间的关系如图 3 带的中央子午线与6 带中央子午线及分带子午线重合 减少了换带计算 工程测量采用3 带 特殊工程可采用1 5 带或任意带 按照6 带划分的规定 第1带中央子午线的经度为3 其余各带中央子午线经度与带号的关系是 L 6 N 3 N为6 带的带号 例 20带中央子午线的经度为 L 6 20 3 117 按照3 带划分的规定 第1带中央子午线的经度为3 其余各带中央子午线经度与带号的关系是 L 3 n n为3 带的带号 例 120带中央子午线的经度为L 3 120 360 若已知某点的经度为L 则该点的6 带的带号N由下式计算 若已知某点的经度为L 则该点所在3 带的带号按下式计算 四舍五入 高斯平面直角坐标系的建立 x轴 中央子午线的投影y轴 赤道的投影原点O 两轴的交点 O x y P X Y 高斯自然坐标 注 X轴向北为正 y轴向东为正 赤道 中央子午线 由于我国的位于北半球 东西横跨12个6 带 各带又独自构成直角坐标系 故 X值均为正 而Y值则有正有负 x y o 500km 500000 636780 360m 500000 227559 720m 国家统一坐标 带号 带号 例 有一国家控制点的坐标 x 3102467 280m y 19367622 380m 1 该点位于6 带的第几带 2 该带中央子午线经度是多少 3 该点在中央子午线的哪一侧 4 该点距中央子午线和赤道的距离为多少 第19带 L 6 19 3 111 先去掉带号 原来横坐标y 367622 380 500000 132377 620m 在西侧 距中央子午线132377 620m 距赤道3102467 280m 不同点 1 x y轴互异 2 坐标象限不同 3 表示直线方向的方位角定义不同 相同点 数学计算公式相同 高斯平面直角坐标系与数学上的笛卡尔平面直角坐标系的异同点 3 椭球面三角系化算到高斯平面 将椭球面三角系归算到高斯投影面的主要内容是 将起始点的大地坐标B L归算为高斯平面直角坐标x y 为了检核还应进行反算 亦即根据x y反算B L 通过计算该点的子午线收敛角及方向改正 将椭球面上起算边大地方位角归算到高斯平面上相应边的坐标方位角 通过计算各方向的曲率改正和方向改正 将椭球面上各三角形内角归算到高斯平面上的由相应直线组成的三角形内角 通过计算距离改正 将椭球面上起算边的长度归算到高斯平面上的直线长度 当控制网跨越两个相邻投影带 需要进行平面坐标的邻带换算 8 2正形投影的一般条件 了解 研究高斯投影应首先满足正形投影的一般条件 然后加上高斯投影的特殊条件 即可导出高斯投影坐标正反算公式 推求时抓住正形投影区别于其它投影的特殊本质 在正形投影中 长度比与方向无关 正形投影方法都必须遵循的法则 柯西 Cauchy 黎曼 Riemann 条件 等量纬度 8 3高斯投影坐标正反算公式 了解 1 高斯投影坐标正算公式 B l x y 高斯投影必须满足以下三个条件 中央子午线投影后为直线 中央子午线投影后长度不变 投影具有正形性质 即正形投影条件 对于任何一种投影 坐标对应关系是最主要的 如果是正形投影 除了满足正形投影的条件外 还有它本身的特殊条件 2 高斯投影坐标反算公式 x y B l 满足以下三个条件 x坐标轴投影后为中央子午线是投影的对称轴 x坐标轴投影后长度不变 投影具有正形性质 即正形投影条件 当B 0时x X 0 y则随l的变化而变化 这就是说 赤道投影为一直线且为y轴 当l 0时 则y 0 x X 这就是说 中央子午线投影亦为直线 且为x轴 其长度与中央子午线长度相等 两轴的交点为坐标原点 当l 常数时 经线 随着B值增加 x值增大 y值减小 这就告诉我们 经线是凹向中央子午线的曲线 且收敛于两极 又因 即当用 B代替B时 y值不变 而x值数值相等符号相反 这就说明赤道是投影的对称轴 当B 常数时 纬线 随着的l增加 x值和y值都增大 这就是说 纬线是凸向赤道的曲线 又当用 l代替l时 x值不变 而y值数值相等符号相反 这就说明 中央子午线是投影对称轴 由于满足正形投影条件 所以经线和纬线的投影是互相垂直的 距中央子午线愈远的子午线 投影后弯曲愈厉害 表明长度变形愈大 3 高斯投影坐标正反算公式的几何解释 练习1 已知某点的坐标 B 29 04 05 3373 L 121 10 33 2012 计算 1 该点的3 带和6 带带号 2 该点的3 带高斯投影坐标并反算检核 子午线收敛角的概念如右图所示 及分别为椭球面点 过点的子午线及平行圈在高斯平面上的描写 由图可知 所谓点子午线收敛角就是在上的切线与坐标北之间的夹角 用表示 在椭球面上 因为子午线同平行圈正交 又由于投影具有正形性质 因此它们的描写线及也必正交 由图可见 平面子午线收敛角也就是等于在点上的切线同平面坐标系横轴的倾角 8 4平面子午线收敛角公式 了解 1 求 的公式 1 由大地坐标L B计算 在中央子午线上l 0 r 0 在赤道上B 0 r 0 在同一经线上 l 常数 纬度愈高 r的绝对值也愈大 在极点处最大 在同一纬线上 B 常数 经差l的绝对值愈大 r的绝对值也愈大 r为奇函数 有正负 当描写点在中央子午线以东时 经差为正 r也为正 当描写点在中央子午线以西时 经差为负 r也为负 2 由高斯平面坐标x y计算 8 5方向改化公式 重点 方向改正数就是指大地线的投影曲线和连接大地线两点的弦之夹角 1 方向改化近似公式的推导 误差小于0 1 可适用于三 四等三角测量的计算 2 方向改化较精密公式的推导 代入 我国二等三角网平均边长为13KM 当ym 250km时 上式精确至0 01 故通常用于二等三角测量计算 该式精确至0 001 适用于一等三角测量计算 3 计算的检核 一个三角形的三个内角的角度改正值 同一点相应两个方向的方向改正之差 之和应等于该三角形的球面角超的负值 此式可用来检查方向改正计算 8 6距离改化公式 重点 由S化至D所加的 S改正称为距离改正 1 研究平面曲线长度s与其弦线长度D的关系 2 研究用大地坐标B L和平面坐标x y计算长度比m的公式 3 最后导出距离改化的计算公式 m 1 1 平面曲线长度s与其弦线长度D的关系 由于v是一个小角 最大不会超过方向改化值 因此可把cosv展开为级数 式中用v的最大值 代替v 已是二次项 D与s之差是四次项微小量 当 取最大40 s 50KM时 代入上式得 化算为相对中误差为 所以 对现有测量方法这个误差可忽略不计 完全可以认为大地线的平面投影曲线长度s等于其弦线长度D 2 长度比和长度变形 长度比m是指椭球面上某一点的微分元素dS 与其投影面上的相应的微分元素ds之比 即 由于长度比m恒大于1 故称为长度变形 1 用大地坐标表示的长度比公式 实用时一般取至二次项在6 带的边缘及低纬度处 有时用到项 2 用平面坐标表示的长度比公式 代入 m随点的位置 B L 或 x y 而异 但在一点上与方向无关 当时 由于m是y 或l 的偶函数 且各项都为 号 故m恒大于1 即除中央子午线外其它投影后都变长了 长度变形 m 1 与成正比例地增大 愈离远中央子午线长度变形愈大 在同一纬线上 即B 常数 长度变形 m 1 随l的增大而增大 在同一经线上 即l 常数 长度变形 m 1 随B的减少而增大 在赤道处 B 0 为最大 当y 0 或l 0 时 即在纵坐标轴或中央子午线上时 各点的m都等于1 即中央子午线投影后长度不变 3 距离改化公式 对于一条三角边来说 由于边长较短 长度比的变化实际上是很微小的 可以认为是一个常数 因而可以用D S来代替dD dS 即有 代入 当S 70km ym 350km 6 带的边缘 计算精度小于0 001m 对于一等边长的归算完全可满足要求 对于二等边长的归算可略去项 对于三四等边长的归算又可再略去项 4 距离改化的实用计算公式 一等三角网的距离改正的实用公式 二等三角网的距离改正的实用公式 三等三角网以下的距离改正的实用公式 产生换带的原因高斯投影为了限制高斯投影的长度变形 以中央子午线进行分带 把投影范围限制在中央子午线东 西两侧一定的范围内 因而 使得统一的坐标系分割成各带的独立坐标系 在工程应用中 往往要用到相邻带中的点坐标 有时工程测量中要求采用带 带或任意带 而国家控制点通常只有带坐标 这时就产生了带同带 或带 任意带 之间的相互坐标换算问题 如下图所示 8 7高斯投影的邻带换算 了解 需要进行坐标邻带换算的情况 1 控制网跨越两个投影带 2 在分界子午线附近地区测图 需要用到另一带的三角点作为控制点时 3 6 带 3 带 1 5 带之间的换算 坐标邻带换算的一般方法 把椭球面上的大地坐标作为过渡坐标 首先把某投影带 如21带 内的有关点的平面坐标x y利用高斯投影反算公式换算成椭球面上的大地坐标B L 然后再由大地坐标B L利用投影正算公式换算成相邻带的 如22带 的平面坐标 计算步骤 根据 利用高斯反算公计算换算 得到 采用已求得的 并顾及到第 带的中央子午线 求得 利用高斯正算公式计算第 带的直角坐标 为了检核计算的正确性 要求每步都应进行往返计算 算例在中央子午线的 带中 有某一点的平面直角坐标 现要求计算该点在中央子午线的第 带的平面直角坐标 1 地图投影的概念在数学中 投影 Project 的含义是指建立两个点集间一一对应的映射关系 同样 在地图学中 地图投影就是指建立地球表面上的点与投影平面上点之间的一一对应关系 地图投影的基本问题就是利用一定的数学法则把地球表面上的经纬线网表示到平面上 由于地球椭球体表面是曲面 而地图通常是要绘制在平面图纸上 因此制图时首先要把曲面展为平面 然而球面是个不可展的曲面 即把它直接展为平面时 不可能不发生破裂或褶皱 若用这种具有破裂或褶皱的平面绘制地图 显然是不实际的 所以必须采用特殊的方法将曲面展开 使其成为没有破裂或褶皱的平面 8 8有关投影的基本知识 了解 2 地图投影的变形1 长度变形2 面积变形3 角度变形 1 墨卡托 Mercator 投影 墨卡托投影为正轴等角切圆柱投影 是由墨卡托于1569年专门为航海目的设计的 其设计思想是令一个与地轴方向一致的圆柱切于或割于地球 将球面上的经纬网按等角条件投影于圆柱表面上 然后将圆柱面沿一条母线剪开展成平面 即得墨卡托投影 该投影的经纬线是互为垂直的平行直线 经线间隔相等 纬线间隔由由赤道向两极逐渐扩大 图上任取一点 由该点向各方向长度比皆相等 即角度变形为零 在正轴等角切圆柱投影中 赤道为没有变形的线 随纬度增高面积变形增大 UTM投影全称为 通用横轴墨卡托投影 UniversalTransverseMercatorProjection 是一种 等角横轴割圆柱投影 椭圆柱割地球于南纬80度 北纬84度两条等高圈 投影后两条相割的经线上没有变形 而中央经线上长度比0 9996 UTM投影是为了全球战争需要创建的 美国于1948年完成这种通用投影系统的计算 UTM投影分带方法与高斯 克吕格投影相似 是自西经180 起每隔经差6度自西向东分带 将地球划分为60个投影带 1 UTM是对高斯投影的改进 改进的目的是为了减少投影变形 2 UTM投影的投影变形比高斯的要小 最大在0 001 但其投影变形规律比高斯要复杂一点 因为它用的是割圆柱 所以 它的m 1的地方是在割线上 实际上是一个圆 处在正负1 40 的位置 距离中央经线大约180km 3 UTM投影在中央经线上 投影变形系数m 0 9996 而高斯投影的中央经线投影的变形系数m 1 4 UTM为了减少投影变形也采用分带 它采用6 分带 但起始的1带是 e174 e180 所以 UTM的6 分带的带号比高斯的大30 5 很重要的一点 高斯投影与UTM投影可近似计算 计算公式是 XUTM 0 9996 X高斯YUTM 0 9996 Y高斯这个公式的误差在1米范围内 完全可以接受 UTM与高斯投影的异同 2 兰勃特投影 等角圆锥投影 设有一个圆锥 其轴与地轴一致 套在地球椭球体上 然后将椭球体面的经纬线网按照等角的条件投影到圆锥面上 再把圆锥面沿母线切开展平 即得到正轴等角圆锥投影的经纬网图形 其中纬线投影成为同心圆弧 经线投影成为向一点收敛的直线束 当圆锥面与椭球体上的一条纬圈相切时 称切圆锥投影 见图 a 当圆锥面相割于椭球面两条纬圈时 称割圆锥投影 见图 b 相切或相割纬圈称为标准纬圈 显然 标准纬圈在圆锥展开后不变 两条纬线间的经线长度处处相等 投影的不同变形性质 只是反映在纬线间隔的变化上 也就是说 圆锥投影的各种变形都是纬度 的的函数 而与经度 无关 对某一个具体的变形性质而言 在同一条纬线上 其变形值相等 在同一条经线上 标准纬线外侧为正变形 两条标准纬线之间为负变形 因此切圆锥投影只有正变形 割圆锥投影既有正变形又有负变形 由于圆锥投影具有上述的变形分布规律 因此该投影适于编制处于中纬地区沿纬线方向东西延伸地域的地图 由于地球上广大陆地均位于中纬地区 同时圆锥投影的经纬网又比较简单 该投影得到了广泛应用 尤其是正轴割圆锥投影 使用非常普遍 我国新编1 100万地形图 使用的便是边纬与中纬变形绝对值相等的等角割圆锥投影 等角割圆锥投影还广泛应用于我国编制出版的全国1 400万 1 600万挂图 以及全国性的普通地图和专题地图等 8 9工程测量投影面与投影带的选择 重点 1999年 城市测量规范 规定 一个城市只应建立一个与国家坐标系统相联系的 相对独立和统一的城市坐标系统 并经上级行政主管部门审查批准后方可使用 城市平面控制测量坐标系统的选择应以投影长度变形值不大于2 5cm km为原则 并根据城市地理位置和平均高程而定 1 当长度变形值不大于2 5cm km时 应采用高斯正形投影统一3 带的平面直角坐标系统 统一3 带的主子午线经度由东经75 起 每隔3 至东经135 2 当长度变形值大于2 5cm km时 可依次采用 1 投影于抵偿高程面上的高斯正形投影带的平面直角坐标系统 2 高斯正形投影任意带的平面直角坐标系统 投影面可采用黄海平均海水面或城市平均高程面 如何选择城市平面控制网坐标系统 3 面积小于25k 的城镇 可不经投影采用假定平面直角坐标系统在平面上直接进行计算 1 工程测量中投影面和投影带选择的基本出发点 1 有关投影变形的基本概念 引起投影变形的因素 1 实量边长归算到参考椭球体面上的变形影响 由公式可以看出 的值总为负 即地面实量长度归算至参考椭球体面上 总是缩短的 值与成正比 随增大而增大 s 2 将参考椭球面上边长归算到高斯投影面上的变形影响 为投影归算边长 即在参考椭求面上的长度 由公式可以看出 的值总为正 即椭球面上长度归算至高斯面上 总是增大的 值与成正比而增大 离中央子午线愈远变形愈大 2 有关工程测量平面控制网的精度要求的概念为便于施工放样的顺利进行 要求由控制点坐标直接反算的边长与实地量得的边长 在长度上应该相等 即由上述两项归算投影改正而带来的变形或改正数 不得大于施工放样的精度要求 一般地 施工放样的方格网和建筑轴线的测量精度为1 5000 1 20000 因此 由归算引起的控制网长度变形应小于施工放样允许误差的1 2 即相对误差为1 10000 1 40000 也就是说 每公里的长度改正数 不应该大于10 2 5cm 2 工程测量投影面和投影带选择的基本出发点 1 在满足精度要求的前提下 为使测量结果一测多用 应采用国家统一3 带高斯平面直角坐标系 将观测结果归算至参考椭球面上 即工程测量控制网应同国家测量系统相联系 2 当边长的两次归算投影改正不能满足上述要求时 为保证测量结果的直接利用和计算的方便 可采用任意带的独立高斯平面直角坐标系 归算测量结果的参考面可自己选定 a 通过改变Hm从而选择合适的高程参考面 将抵偿分带投影变形 称为抵偿投影面的高斯正形投影 b 改变ym从而对中央子午线作适当移动 以抵偿由高程面的边长归算到参考椭球面上的投影变形 称为任意带高斯正形投影 c 通过既改变Hm 选择高程参考面 又改变ym 移动中央子午线 来抵偿两项归算改正变形 称为具有高程抵偿面的任意带高斯正形投影 3 工程测量中几种可能采用的直角坐标系 1 国家3 带高斯正形投影平面直角坐标系 据计算 当测区平均高程在100m以下 且ym值不大于40km时 其投影变形值均小于2 5cm 可以满足大比例尺测图和工程放样的精度要求 因此在偏离中央子午线不远和地面平均高程不大的地区 无需考虑投影变形问题 直接采用国家统一的3 带高斯正形投影平面直角坐标系作为工程测量的坐标系 使两者一致 2 抵偿投影面的3 带高斯正形投影平面直角坐标系 此时仍采用国家3 带高斯投影 但投影的高程面不是参考椭球面而是依据补偿高斯投影长度变形而选择的高程参考面 在该参考面上长度变形为零 抵偿投影面的高程如何确定 当采用第一种坐标系时 有 若超过允许的精度要求 10 2 5cm 时 应考虑采用抵偿投影面进行投影 即采用第二种坐标系 此时在抵偿投影面上的投影变形为0 设该面的高程为H抵即 此时ym是定值 且假设不同投影面上同一距离近似相等 例1 某测区的平均高程为Hm 400m 测区中心在高斯投影3 带的坐标为y 80km 要使测区内抵偿投影面上的长度与实地长度之差最小 试问抵偿高程面应如何选定 所以抵偿高程面高程应为 3 任意带高斯正形投影平面直角坐标系 该坐标系中 仍把地面观测结果归算到参考椭球面上 但投影带的中央子午线不按国家3 带的划分方法 而是依据补偿高程面归算长度变形而选择的某一条子午线作为中央子午线 当Hm不变 且假设不同投影面上同一距离近似相等 表示某测区中心的横坐标值 或测区内y坐标的平均值 如果是用上式计算得到的ym时 此时的投影变形为0 即已知ym的情况 来反确定中央子午线的位置 例2 某测区中心所在的大地坐标为L 114 10 20 B 34 21 18 北京54 测区内平均高程为Hm 400m 为使高斯投影面上的长度与实地长度保持一致 试确定抵偿投影带中央子午线的经度 设Rm N 6371km 取高斯坐标正算y的第一项 所以抵偿投影带的中央子午线的经度为 4 具有高程抵偿面的任意带高斯正形投影平面直角坐标系 该坐标系中 往往是指投影的中央子午线选在测区的中央 地面观测值归算到测区平均高程面上 按高斯正形投影计算平面直角坐标系 因此 这是综合第二 三两种坐标系长处的一种任意高斯直角坐标系 显然这种坐标系更能有效地实现两种长度变形改正的补偿 5 假定平面直角坐标系 当测区面积小于时 可不进行方向和距离改正 直接把局部地球表面作为平面建立独立的平面直角坐标系 这时起算坐标和起算方位角最好能与国家网联测 如果联测有困难可自行测定边长和方位 而起始点坐标可假定 这种假定平面直角坐标系只限于某种工程建筑施工之用 这种方案的思路结合了前面两种方案的一些特点 即将中央子午线移动至测区中部 又变换了高程投影面 当测区东西向跨度较大时 需要抵偿的带宽较大时 应采用此种方案建立坐标系统 该方案同时要求 表示若抵偿高程面的高程取测区的平均高程 或略低于该平均高程面 考虑到高程异常 则各边长的高程投影变形近似为0 表示若测区在中央子午线附近 则各边长的高斯
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第六章谈判准备(二)
- 幼儿园小班音乐教案《摇啊摇摇到外婆桥》
- 学习2022学校安全工作会议解读全文
- 新职业领域教师资格证面试题库精 编版
- 腰椎间盘突出症康复护理
- 杭州面试题目精 编:面试官必 备指南
- 2022年员工职业素养培训
- 学习202218岁成人礼解读
- 资本市场双向开放的机遇与挑战
- 行政仓库盘点汇报
- 被迫签署离职协议书
- 内蒙古华电正能圣圆伊金霍洛旗风光制氢一体化项目(风电部分)-环境影响报告书
- 感冒急性鼻炎护理
- 2024年村秘书述职报告
- 私房摄影保密协议书
- 天麻买卖合同协议
- 展览会会务服务投标方案(技术方案)
- 2025届四川省泸州市高三下学期第三次教学质量诊断性考试英语试题(原卷版+解析版)
- 船闸水工建筑物设计规范
- 铝塑板装饰施工方案
- 心电图操作及简单解读
评论
0/150
提交评论