




已阅读5页,还剩84页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2012填空压轴、选择压轴、压轴题、倒数第二题(1:AG)安徽10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A.10 B. C. 10或 D.10或解析:考虑两种情况要分清从斜边中点向哪个边沿着垂线段过去裁剪的.解答:解:如下图, 14.如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到PAB、PBC、PCD、PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论: S1+S2=S3+S4 S2+S4= S1+ S3 若S3=2 S1,则S4=2 S2 若S1= S2,则P点在矩形的对角线上其中正确的结论的序号是_解析:过点P分别向AD、BC作垂线段,两个三角形的面积之和等于矩形面积的一半,同理,过点P分别向AB、CD作垂线段,两个三角形的面积之和等于矩形面积的一半. =,又因为,则=,所以一定成立安徽22.如图1,在ABC中,D、E、F分别为三边的中点,G点在边AB上,BDG与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.(1)求线段BG的长;(2)求证:DG平分EDF;(3)连接CG,如图2,若BDG与DFG相似,求证:BGCG.解(1)D、C、F分别是ABC三边中点 DEAB,DFAC,又BDG与四边形ACDG周长相等 即BD+DG+BG=AC+CD+DG+AGBG=AC+AG BG=ABAG BG=(2)证明:BG=,FG=BGBF=FG=DF,FDG=FGD又DEAB EDG=FGD FDG=EDG DG平分EDF(3)在DFG中,FDG=FGD, DFG是等腰三角形,BDG与DFG相似,BDG是等腰三角形,B=BGD,BD=DG,则CD= BD=DG,B、CG、三点共圆, BGC=90,BGCG23.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围。23解:(1)把x=0,y=2,及h=2.6代入到y=a(x6)2+h 即2=a(06)2+2.6, y= (x6)2+2.6(2)当h=2.6时,y= (x6)2+2.6 x=9时,y= (96)2+2.6=2.452.43 球能越过网x=18时,y= (186)2+2.6=0.20 球会过界(3)x=0,y=2,代入到y=a(x6)2+h得;x=9时,y= (96)2+h2.43 x=18时,y= (186)2+h0 由 得h北京8 小翔在如图1所示的场地上匀速跑步,他从点出发,沿箭头所示方向经过点跑到点,共用时30秒他的教练选择了一个固定的位置观察小翔的跑步过程设小翔跑步的时间为(单位:秒),他与教练的距离为(单位:米),表示与的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的A点B点C点D点【解析】 D12在平面直角坐标系中,我们把横 、纵坐标都是整数的点叫做整点已知点,点是轴正半轴上的整点,记内部(不包括边界)的整点个数为当时,点的横坐标的所有可能值是 ;当点的横坐标为(为正整数)时, (用含的代数式表示)【解析】 3或4;北京24在中,是的中点,是线段上的动点,将线段绕点顺时针旋转得到线段。 (1) 若且点与点重合(如图1),线段的延长线交射线于点,请补全图形,并写出的度数; (2) 在图2中,点不与点重合,线段的延长线与射线交于点,猜想的大小(用含的代数式表示),并加以证明; (3) 对于适当大小的,当点在线段上运动到某一位置(不与点,重合)时,能使得线段的延长线与射线交于点,且,请直接写出的范围。【解析】 , 连接,易证 又 , 且 点不与点重合 25在平面直角坐标系中,对于任意两点与的“非常距离”,给出如下定义: 若,则点与点的“非常距离”为; 若,则点与点的“非常距离”为. 例如:点,点,因为,所以点与点的“非常距离”为,也就是图1中线段与线段长度的较大值(点为垂直于轴的直线与垂直于轴的直线的交点)。 (1)已知点,为轴上的一个动点, 若点与点的“非常距离”为2,写出一个满足条件的点的坐标; 直接写出点与点的“非常距离”的最小值; (2)已知是直线上的一个动点, 如图2,点的坐标是(0,1),求点与点的“非常距离”的最小值及相应的点的坐标; 如图3,是以原点为圆心,1为半径的圆上的一个动点,求点与点的“非常距离”的最小值及相应的点和点的坐标。【解析】 或 设坐标当此时距离为此时. 最小值1。重庆10已知二次函数y=ax2+bx+c(a0)的图象如图所示对称轴为x=下列结论中,正确的是()Aabc0Ba+b=0C2b+c0D4a+c2b解答:解:A、开口向上,a0,与y轴交与负半轴,c0,对称轴在y轴左侧,0,b0,abc0,故本选项错误;B、对称轴:x=,a=b,故本选项错误;C、当x=1时,a+b+c=2b+c0,故本选项错误;D、对称轴为x=,与x轴的一个交点的取值范围为x11,与x轴的另一个交点的取值范围为x22,当x=2时,4a2b+c0,即4a+c2b,故本选项正确故选D16甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌规定每人最多两种取法,甲每次取4张或(4k)张,乙每次取6张或(6k)张(k是常数,0k4)经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有108张分析:设甲a次取(4k)张,乙b次取(6k)张,则甲(15a)次取4张,乙(17b)次取6张,从而根据两人所取牌的总张数恰好相等,得出a、b之间的关系,再有取牌总数的表达式,讨论即可得出答案解答:解:设甲a次取(4k)张,乙b次取(6k)张,则甲(15a)次取4张,乙(17b)次取6张,则甲取牌(60ka)张,乙取牌(102kb)张,则总共取牌:N=a(4k)+4(15a)+b(6k)+6(17b)=k(a+b)+162,从而要使牌最少,则可使N最小,因为k为正数,函数为减函数,则可使(a+b)尽可能的大,由题意得,a15,b16,又最终两人所取牌的总张数恰好相等,故k(ba)=42,而0k4,ba为整数,则由整除的知识,可得k可为1,2,3,当k=1时,ba=42,因为a15,b16,所以这种情况舍去;当k=2时,ba=21,因为a15,b16,所以这种情况舍去;当k=3时,ba=14,此时可以符合题意,综上可得:要保证a15,b16,ba=14,(a+b)值最大,则可使b=16,a=2;b=15,a=1;b=14,a=0;当b=16,a=2时,a+b最大,a+b=18,继而可确定k=3,(a+b)=18,所以N=318+162=108张故答案为:108重庆 企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1x6,且x取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的污水量y2(吨)与月份x(7x12,且x取整数)之间满足二次函数关系式为其图象如图所示1至6月,污水厂处理每吨污水的费用:(元)与月份x之间满足函数关系式:,该企业自身处理每吨污水的费用:(元)与月份x之间满足函数关系式:;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助若该企业每月的污水处理费用为18000元,请计算出a的整数值(参考数据:15.2,20.5,28.4)解答:解:(1)根据表格中数据可以得出xy=定值,则y1与x之间的函数关系为反比例函数关系:y1=,将(1,12000)代入得:k=112000=12000,故y1=(1x6,且x取整数);根据图象可以得出:图象过(7, 10049),(12,10144)点,代入得:,解得:,故y2=x2+10000(7x12,且x取整数);(2)当1x6,且x取整数时:W=y1x1+(12000y1)x2=x+(12000)(xx2),=1000x2+10000x3000,a=10000,x=5,1x6,当x=5时,W最大=22000(元),当7x12时,且x取整数时,W=2(12000y1)+1.5y2=2(12000x210000)+1.5(x2+10000),=x2+1900,a=0,x=0,当7x12时,W随x的增大而减小,当x=7时,W最大=18975.5(元),2200018975.5,去年5月用于污水处理的费用最多,最多费用是22000元;(3)由题意得:12000(1+a%)1.51+(a30)%(150%)=18000,设t=a%,整理得:10t2+17t13=0,解得:t=,28.4,t10.57,t22.27(舍去),a57,答:a的值是5726已知:如图,在直角梯形ABCD中,ADBC,B=90,AD=2,BC=6,AB=3E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形BEFG,当点E与点C重合时停止平移设平移的距离为t,正方形BEFG的边EF与AC交于点M,连接BD,BM,DM,是否存在这样的t,使BDM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形BEFG与ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围解答:解:(1)如图,设正方形BEFG的边长为x,则BE=FG=BG=x,AB=3,BC=6,AG=ABBG=3x,GFBE,AGFABC,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图,过点D作DHBC于H,则BH=AD=2,DH=AB=3,由题意得:BB=HE=t,HB=|t2|,EC=4t,在RtBME中,BM2=ME2+BE2=22+(2t)2=t22t+8,EFAB,MECABC,即,ME=2t,在RtDHB中,BD2=DH2+BH2=32+(t2)2=t24t+13,过点M作MNDH于N,则MN=HE=t,NH=ME=2t,DN=DHNH=3(2t)=t+1,在RtDMN中,DM2=DN2+MN2=t2+t+1,()若DBM=90,则DM2=BM2+BD2,即t2+t+1=(t22t+8)+(t24t+13),解得:t=,()若BMD=90,则BD2=BM2+DM2,即t24t+13=(t22t+8)+(t2+t+1),解得:t1=3+,t2=3(舍去),t=3+;()若BDM=90,则BM2=BD2+DM2,即:t22t+8=(t24t+13)+(t2+t+1),此方程无解,综上所述,当t=或3+时,BDM是直角三角形;(3)如图,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,CE=,t=BB=BCBEEC=62=,ME=2t,FM=t,当0t时,S=SFMN=tt=t2,当G在AC上时,t=2,EK=ECtanDCB=EC=(4t)=3t,FK=2EK=t1,NL=AD=,FL=t,当t2时,S=SFMNSFKL=t2(t)(t1)=t2+t;如图,当G在CD上时,BC:CH=BG:DH,即BC:4=2:3,解得:BC=,EC=4t=BC2=,t=,BN=BC=(6t)=3t,GN=GBBN=t1,当2t时,S=S梯形GNMFSFKL=2(t1+t)(t)(t1)=t2+2t,如图,当t4时,BL=BC=(6t),EK=EC=(4t),BN=BC=(6t)EM=EC=(4t),S=S梯形MNLK=S梯形BEKLS梯形BEMN=t+综上所述:当0t时,S=t2,当t2时,S=t2+t;当2t时,S=t2+2t,当t4时,S=t+福建福州10如图,过点C(1,2)分别作x轴、y轴的平行线,交直线yx6于A、B两点,若反比例函数y(x0)的图像与ABC有公共点,则k的取值范围是 A2k9 B2k8 C2k5 D5k8解答:解: 点C(1,2),BCy轴,ACx轴, 当x1时,y165,当y2时,x62,解得x4, 点A、B的坐标分别为A(4,2),B(1,5),根据反比例函数系数的几何意义,当反比例函数与点C相交时,k122最小,设与线段AB相交于点(x,x6)时k值最大,则kx(x6)x26x(x3)29, 1x4, 当x3时,k值最大,此时交点坐标为(3,3),因此,k的取值范围是2k9故选A15如图,已知ABC,ABAC1,A36,ABC的平分线BD交AC于点D,则AD的长是_,cosA的值是_(结果保留根号)ABCDE解答: ABC,ABAC1,A36, ABCACB72 BD是ABC的平分线, ABDDBCABC36 ADBC36,又 CC, ABCBDC, ,设ADx,则BDBCx则,解得:x(舍去)或故x 如右图,过点D作DEAB于点E, ADBD,E为AB中点,即AEAB在RtAED中,cosA故答案是:;福建福州21如图,在RtABC中,C90,AC6,BC8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PDBC,交AB于点D,连接PQ点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t0)(1) 直接用含t的代数式分别表示:QB_,PD_(2) 是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度; (3) 如图,在整个运动过程中,求出线段PQ中点M所经过的路径长解答:解:(1) QB82t,PDt 第21题图ABCDPQ第21题图ABCDPQABCM1xyPNQM2M3D图2ABCPNQD图3EMFH (2) 不存在在RtABC中,C90,AC6,BC8, AB10 PDBC, APDACB, ,即:, ADt, BDABAD10t BQDP, 当BQDP时,四边形PDBQ是平行四边形,即82tt,解得:t当t时,PD,BD106, DPBD, PDBQ不能为菱形设点Q的速度为每秒v个单位长度, 则BQ8vt,PDt,BD10t要使四边形PDBQ为菱形,则PDBDBQ,当PDBD时,即t10t,解得:t当PDBQ时,t时,即8v,解得:v (3) 解法一:如图2,以C为原点,以AC所在直线为x轴,建立平面直角坐标系依题意,可知0t4,当t0时,点M1的坐标为(3,0);当t4时,点M2的坐标为(1,4)设直线M1M2的解析式为ykxb, ,解得: 直线M1M2的解析式为y2x6 点Q(0,2t),P(6t,0), 在运动过程中,线段PQ中点M3的坐标为(,t)把x,代入y2x6,得y26t 点M3在直线M1M2上过点M2作M2Nx轴于点N,则M2N4,M1N2 M1M22 线段PQ中点M所经过的路径长为2单位长度解法二:如图3,设E是AC的中点,连接ME当t4时,点Q与点B重合,运动停止设此时PQ的中点为F,连接EF过点M作MNAC,垂足为N,则MNBC PMNPDC ,即: MNt,PN3t, CNPCPN(6t)(3t)3t ENCECN3(3t) t tanMEN2 tanMEN的值不变, 点M在直线EF上过F作FHAC,垂足为H则EH2,FH4 EF2 当t0时,点M与点E重合;当t4时,点M与点F重合, 线段PQ中点M所经过的路径长为2单位长度22如图,已知抛物线yax2bx(a0)经过A(3,0)、B(4,4)两点(1) 求抛物线的解析式;(2) 将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3) 如图,若点N在抛物线上,且NBOABO,则在(2)的条件下,求出所有满足PODNOB的点P的坐标(点P、O、D分别与点N、O、B对应) 解:(1) 抛物线yax2bx(a0)经过点A(3,0)、B(4,4) ,解得: 抛物线的解析式是yx23xDABOxyN图1AP1N1P2B1图2AN2P1P2B2ABDOxyN (2) 设直线OB的解析式为yk1x,由点B(4,4),得:44k1,解得k11 直线OB的解析式为yx 直线OB向下平移m个单位长度后的解析式为:yxm 点D在抛物线yx23x上 可设D(x,x23x)又点D在直线yxm上, x23x xm,即x24xm0 抛物线与直线只有一个公共点, 164m0,解得:m4此时x1x22,yx23x2, D点坐标为(2,2) (3) 直线OB的解析式为yx,且A(3,0), 点A关于直线OB的对称点A的坐标是(0,3)设直线AB的解析式为yk2x3,过点B(4,4), 4k234,解得:k2 直线AB的解析式是yx3 NBOABO, 点N在直线AB上, 设点N(n,n3),又点N在抛物线yx23x上, n3n23n, 解得:n1,n24(不合题意,会去), 点N的坐标为(,)方法一:如图1,将NOB沿x轴翻折,得到N1OB1,则N1(,),B1(4,4), O、D、B1都在直线yx上 P1ODNOB, P1ODN1OB1, , 点P1的坐标为(,)将OP1D沿直线yx翻折,可得另一个满足条件的点P2(,)综上所述,点P的坐标是(,)或(,)方法二:如图2,将NOB绕原点顺时针旋转90,得到N2OB2,则N2(,),B2(4,4), O、D、B2都在直线yx上 P1ODNOB, P1ODN2OB2, , 点P1的坐标为(,)将OP1D沿直线yx翻折,可得另一个满足条件的点P2(,)综上所述,点P的坐标是(,)或(,)福建龙岩10如图,矩形ABCD中,AB=1,BC=2,把矩形ABCD 绕AB所在直线旋转一周所得圆柱的侧面积为A B C D2 B(第10题图)(第17题图)17如图,平面直角坐标系中,O1过原点O,且O1与O2相外切,圆心O1与O2在x轴正半轴上,O1的半径O1P1、O2的半径O2P2都与x轴垂直,且点P1、P2在反比例函数(x0)的图象上,则_福建龙岩24矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对应点A落在线段BC上,再打开得到折痕EF (1)当A与B重合时(如图1),EF= ;当折痕EF过点D时(如图2),求线段EF的长; (2)观察图3和图4,设BA=x,当x的取值范围是 时,四边形AEAF是菱形;在的条件下,利用图4证明四边形AEAF是菱形24 (1) 5 2分 解法1:由折叠(轴对称)性质知 在Rt中,=3 又 RtRt 在Rt中,6分 解法2:同解法1得设,则 4分 在Rt中, 在Rt中,6分 解法3:同解法1得RtRt =156 连结, = (2) 证明: 法一:由折叠(轴对称)性质知 又 BC AFE=FEA AEF=AFE AE=AF 四边形是菱形法二:由折叠(轴对称)性质知,过作,交AD于G,证明得 四边形是菱形25在平面直角坐标系xoy中, 一块含60角的三角板作如图摆放,斜边 AB在x轴上,直角顶点C在y轴正半轴上,已知点A(1,0) (1)请直接写出点B、C的坐标:B( , )、C( , );并求经过A、B、C三点的抛物线解析式; (2)现有与上述三角板完全一样的三角板DEF(其中EDF=90,DEF=60),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C 此时,EF所在直线与(1)中的抛物线交于第一象限的点M 设AE=x,当x为何值时,OCEOBC; 在的条件下探究:抛物线的对称轴上是否存在点P使PEM是等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由备用图25(1)B(3,0),C(0,) 解:法1: 设过A、B、C三点的抛物线为,则 A(1,0)B(3,0) 又C(0,)在抛物线上 即 (2)解:当OCEOBC时,则 , OE=AEAO=, OB=3 当时,OCEOBC(2)解:存在点P. 理由如下: 由可知 OE=1 E(1,0) 此时,CAE为等边三角形 AEC=A=60又CEM=60 MEB=60 点C与点M关于抛物线的对称轴对称. C(0,) M 过M作MN轴于点N(2,0) MN= EN=1 EM= 若PEM为等腰三角形,则:)当EP=EM时, EM=2,且点P在直线上 P(1,2)或P(1,2) )当EM=PM时,点M在EP的垂直平分线上 P(1,2) )当PE=PM时,点P是线段EM的垂直平分线与直线的交点 P(1,) 综上所述,存在P点坐标为(1,2)或(1,2)或(1,)或(1,)时,EPM为等腰三角形 福建南平 10. 如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为【 】A B C D3 【分析】正方形纸片ABCD的边长为3,C=90,BC=CD=3。根据折叠的性质得:EG=BE=1,GF=DF。设DF=x,则EF=EGGF=1x,FC=DCDF=3x,EC=BCBE=31=2。在RtEFC中,EF2=EC2FC2,即(x1)2=22(3x)2,解得:。DF= ,EF=1。故选B。 18设x)表示大于x的最小整数,如3)=4,1.2)=1,则下列结论中正确的是 (填写所有正确结论的序号)0)=0;x)x的最小值是0;x)x的最大值是0;存在实数x,使x)x=0.5成立【分析】根据题意x)表示大于x的最小整数,结合各项进行判断即可得出答案:0)=1,故结论错误;x)x0,但是取不到0,故结论错误;x)x1,即最大值为1,故结论错误;存在实数x,使x)x=0.5成立,例如x=0.5时,故结论正确。福建南平25在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(m,1)(m0),将此矩形绕O点逆时针旋转90,得到矩形OABC(1)写出点A、A、C的坐标;(2)设过点A、A、C的抛物线解析式为y=ax2+bx+c,求此抛物线的解析式;(a、b、c可用含m的式子表示)(3)试探究:当m的值改变时,点B关于点O的对称点D是否可能落在(2)中的抛物线上?若能,求出此时m的值 【答案】解:(1)四边形ABCD是矩形,点B的坐标为(m,1)(m0),A(m,0),C(0,1)。矩形OABC由矩形OABC旋转90而成,A(0,m),C(1,0)。(2)设过点A、A、C的抛物线解析式为y=ax2bxc,A(m,0),A(0,m),C(1,0),解得。此抛物线的解析式为:y=x2(m1)xm。(3)点B与点D关于原点对称,B(m,1),点D的坐标为:(m,1),假设点D(m,1)在(2)中的抛物线上,0=(m)2(m1)(m)m=1,即2m22m1=0,=(2)2422=40,此方程无解。点D不在(2)中的抛物线上。26如图,在ABC中,点D、E分别在边BC、AC上,连接AD、DE,且1=B=C(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一: ;结论二: ;结论三: (2)若B=45,BC=2,当点D在BC上运动时(点D不与B、C重合),求CE的最大值;若ADE是等腰三角形,求此时BD的长【答案】解:(1)AB=AC;AED=ADC;ADEACD。(2)B=C,B=45,ACB为等腰直角三角形。1=C,DAE=CAD,ADEACD。AD:AC=AE:AD, 。当AD最小时,AE最小,此时ADBC,AD=BC=1。AE的最小值为 。CE的最大值= 。 当AD=AE时,1=AED=45,DAE=90。点D与B重合,不合题意舍去。当EA=ED时,如图1,EAD=1=45。AD平分BAC,AD垂直平分BC。BD=1。当DA=DE时,如图2,ADEACD,DA:AC=DE:DC。DC=CA=。BD=BCDC=2。综上所述,当ADE是等腰三角形时,BD的长的长为1或2。福建宁德10如图,在矩形ABCD中,AB2,BC3,点E、F、G、H分别在矩形ABCD的各边上,EFHG,EHFG,则四边形EFGH的周长是【 】A B C2 D2【答案】D。 18如图,点M是反比例函数y在第一象限内图象上的点,作MBx轴于点B过点M的第一条直线交y轴于点A1,交反比例函数图象于点C1,且A1C1A1M,A1C1B的面积记为S1;过点M的第二条直线交y轴于点A2,交反比例函数图象于点C2,且A2C2A2M,A2C2B的面积记为S2;过点M的第三条直线交y轴于点A3,交反比例函数图象于点C3,且A3C3A3M,A3C3B的面积记为S3;依次类推;则S1S2S3S8 【答案】。25某数学兴趣小组开展了一次活动,过程如下:如图1,在等腰ABC中,ABAC,BAC90,小敏将一块三角板中含45角的顶点放在点A处,从AB边开始绕点A顺时针旋转一个角,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分MAB,则AE也平分MAC请你证明小敏发现的结论;(2)当045时,小敏在旋转的过程中发现线段BD、CE、DE之间存在如下等量关系:BD2CE2DE2同组的小颖和小亮随后想出了两种不同的方法进行解决:小颖的方法:将ABD沿AD所在的直线对折得到ADF,连接EF(如图2);小亮的方法:将ABD绕点A逆时针旋转90得到ACG,连接EG(如图3)请你从中任选一种方法进行证明;(3)小敏继续旋转三角板,在探究中得出:当45135且90时,等量关系BD2CE2DE2仍然成立现请你继续探究:当135180时(如图4),等量关系BD2CE2DE2是否仍然成立?若成立,给出证明:若不成立,说明理由【答案】解:(1)证明:BAC90,DAEDAMMAE45,BADEAC45。 又AD平分MAB,BADDAM。MAEEAC。AE平分MAC。 (2)证明小颖的方法: 将ABD沿AD所在的直线对折得到ADF,AFAB,AFDB45,BADFAD。 又AC=AB,AFAC。 由(1)知,FAECAE。 在AEF和AEC中,AF AC,FAECAE,AEAE, AEFAEC(SAS)。CEFE,AFEC45。 DFEAFD AFE90。 在RtOCE中,DE2FE2DE2,BD2CE2DE2。(3)当135180时,等量关系BD2CE2DE2仍然成立。证明如下: 如图,按小颖的方法作图,设AB与EF相交于点G。 将ABD沿AD所在的直线对折得到ADF,AFAB,AFDABC45,BADFAD。 又AC=AB,AFAC。 又CAE900BAE900(45BAD)45BAD45FADFAE。在AEF和AEC中,AF AC,FAECAE,AEAE, AEFAEC(SAS)。CEFE,AFEC45。又在AGF和BGE中,ABCAFE45,AGFBGE,FAGBEG。又FDEDEF=FDEFAG(ADBDAB)ABC90。DFE90。在RtOCE中,DE2FE2DE2,BD2CE2DE2。26如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD10,OB8将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合(1)直接写出点A、B的坐标:A( , )、B( , );(2)若抛物线yx2bxc经过点A、B,则这条抛物线的解析式是 ;(3)若点M是直线AB上方抛物线上的一个动点,作MNx轴于点N问是否存在点M,使AMN与ACD相似?若存在,求出点M的坐标;若不存在,说明理由;(4)当x7,在抛物线上存在点P,使ABP的面积最大,求ABP面积的最大值【答案】解:(1)(6,0),(0,8)。 (2)。 (3)存在。设M,则N(m,0)MN=,NA=6m。 又DA=4,CD=8,若点M在点N上方,则AMNACD。,即,解得m=6或m=10。与点M是直线AB上方抛物线上的一个动点不符。此时不存在点M,使AMN与ACD相似。若点M在点N下方,则AMNACD。,即,解得m=2或m=6。与点M是直线AB上方抛物线上的一个动点不符。此时不存在点M,使AMN与ACD相似。若点M在点N上方,则AMNACD。,即,方程无解。此时不存在点M,使AMN与ACD相似。若点M在点N下方,则AMNACD。,即,解得m=或m=6。当m=时符合条件。此时存在点M(,),使AMN与ACD相似。综上所述,存在点M(,),使AMN与ACD相似。(4)设P(p,), 在中,令y=0,得x=4或x=6。 x7分为x4,4x6和6x7三个区间讨论: 如图,当x4时,过点P作PHx轴于点H则OH=p,HA=6p ,PH=。 当x4时,随p的增加而减小。当x=时,取得最大值,最大值为。如图,当4x6时,过点P作PHBC于点H,过点A作AGBC于点G。则BH= p,HG=6p,PH=, 当4x6时,随p的增加而减小。当x=4时,取得最大值,最大值为8。如图,当6x7时,过点P作PHx轴于点H。则OH=p,HA= p6,PH=。当6x7时,随p的增加而增加。当x=7时,取得最大值,最大值为7。综上所述,当x=时,取得最大值,最大值为。福建泉州如图,点O是ABC的内心,过点O作EFAB,与AC、BC分别交于点E、F,则( )A .EFAE+BF B. EFAE+BF C.EF=AE+BF D.EFAE+BF 解:应选C。 思考归纳:解:如图:可作出过切点的几条半径,则其与切线互相垂直,再过点E、F作AB的垂线段,通过证明三角形全等,将EF进行转化,从而得到EF=AE+BF。在ABC中,P是AB上的动点(P异于A、B),过点P的直线截ABC,使截得的三角形与ABC相似,我们不妨称这种直线为过点P的ABC的相似线,简记为P(),(为自然数).(1).如图,A=90,B=C,当BP=2PA时,P()、P()都是过点P的ABC的相似线(其中BC,AC),此外还有_条. (2).如图,C=90,B=30,当_时,P()截得的三角形面积为ABC面积的. 福建泉州25.(12分)已知:A、B、C不在同一直线上.(1).若点A、B、C均在半径为R的O上,A、B、C如图一,当A=45时,R=1,求BOC的度数和BC的长度; .如图二,当A为锐角时,求证sinA=;(2).若定长线段BC的两个端点分别在MAN的两边AM、AN(B、C均与点A不重合)滑动,如图三,当MAN=60,BC=2时,分别作BPAM,CPAN,交点为点P ,试探索:在整个滑动过程中,P、A两点的距离是否保持不变?请说明理由. 解:(1). BOC=90(同弧所对的圆周角等于其所对的圆心角的一半);由勾股定理可知BC= (提示:也可延长BO或过点O作BC边的垂线段) 证明:可连接BO并延长,交圆于点E,连接EC. 可知ECBC(直径所对的圆周角为90) 且E=BAC(同弧所对的圆周角相等) 故sinA=.(或过点O作BC边的垂线段)。 (2).保持不变.可知CQPBQA,且AQP=BQC,所以BCQAPQ; 即; AP=(为定值). 故保持不变。26.(14分)如图,点O为坐标原点,直线绕着点A(0,2)旋转,与经过点C(0,1)的二次函数交于不同的两点P、Q. (1).求h的值; (2).通过操作、观察算出POQ面积的最小值;(3).过点P、C作直线,与轴交于点B,试问:在直线的旋转过程中四边形AOBQ是否为梯形,若是,请说明理由;若不是,请指明其形状. 解:(1).0,1)带入二次函数中,得; (2). 操作、观察可知当直线轴时,其面积最小; 将y=2带入二次函数中,得, S最小=(24)2=4. (3)由特殊到一般:一、如图所示,当直线轴时,四边形AOBQ为正方形。可知BO=AQ=2;AOB=90,故四边形AOBQ为正方形。二、如图二,当直线不平行与轴时,四边形AOBQ为梯形。 连接BQ,设P(),Q();()直线BC:过低点P,即,得;点B为();同理直线:;得b=;所以点Q、B同横坐标,即为ACBQ,且AQ不与OB平行;故四边形AOBQ为梯形。福建三明10如图,在平面直角坐标系中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论