




已阅读5页,还剩90页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 2020 2 5 1 任务2 圆轴扭转横截面上的应力与应变 模块四 截面应力计算 任务3 平面弯曲正应力计算 任务1 轴心拉压的应力与应变 任务4 平面弯曲剪应力计算 任务5 组合变形应力计算 任务6 平面应力状态应力计算 2020 2 5 2 模块四 截面应力的计算 1 了解全应力 正应力 切应力的概念及单位 2 掌握轴心拉压的应力 应变 变形及胡克定律 3 掌握轴向拉伸压缩时材料的力学性能 工作许用应力 4 理解扭转圆轴横截面上应力分布规律 掌握切应力的计算 5 平行移轴公式及常见组合截面的惯性矩计算 6 掌握弯曲正应力分布规律及计算公式 7 掌握弯曲剪应力的分布规律及计算公式 8 掌握斜弯曲 拉 压 弯杆 偏心压缩杆的正应力 截面核心 9 理解平面应力状态分析的解析法 图解法 学习目标 1 具有轴向拉抻和压缩构件的应力变形的计算能力 2 会计算简单图形的惯性矩 极惯性矩 惯性积 惯性半径 能用平行移轴公式计算组合图形的形心主惯性矩 3 熟练掌握梁横截面上的正应力计算公式 4 能联系工程实例进行组合变形的应力计算及确定截面应力分布 重点 轴心拉压应力 应变计算 平行移轴公式及常见组合截面的惯性矩计算 弯曲正应力分布规律及计算公式 偏心压缩杆的正应力 难点 剪切胡克定律 惯性半径 弯曲剪应力的分布规律及计算公式 平面应力状态分析的解析法 图解法 学习内容 2020 2 5 3 任务1 轴心拉压 知识目标 掌握轴心拉压的应力 应变 变形及胡克定律及低碳钢拉伸性能 能力目标 能求解轴心拉压杆的应力和应变 任务引领 图示支架 AB杆为圆截面杆 L1 4m d 30mm BC杆为正方形截面杆 其边长a 60mm F 10KN 弹性模量E 200Mpa 试求AB杆和BC杆横截面上的正应力和伸缩量 2020 2 5 4 A 10mm2 A 100mm2 10KN 10KN 10KN 10KN 哪个杆先破坏 一 应力的概念 受力杆件某截面上一点的内力分布疏密程度 内力集度 工程构件 大多数情形下 内力并非均匀分布 集度的定义不仅准确而且重要 因为 破坏 或 失效 往往从内力集度最大处开始 应力就是单位面积上的力 2020 2 5 5 A 垂直于截面的应力称为 正应力 位于截面内的应力称为 切应力 应力的国际单位为N m2 帕斯卡 1N m2 1Pa 1MPa 106Pa 1N mm2 1GPa 109Pa P 总应力 2020 2 5 6 FP FP 变形规律试验 观察发现 当杆受到轴向拉力作用后 所有的纵向线都伸长了 而且伸长量都相等 并且仍然都与轴线平行 所有的横向线仍然保持与纵向线垂直 而且仍为直线 只是它们之间的相对距离增大了 二 拉 压 杆横截面上的应力与应变 2020 2 5 7 当轴力为拉力时 正应力为拉应力 取正号 当轴力为压力时 正应力为压应力 取负号 两个假设 平面假设 横截面只沿杆轴线平行移动 纤维假设 横截面之间所有纵向纤维的伸长量相等 可知 横截面上只有正应力 且大小相等 轴心拉压应力公式 2020 2 5 8 轴心拉压应变公式 完成任务 图示支架 AB杆为圆截面杆 L1 4m d 30mm BC杆为正方形截面杆 其边长a 60mm F 10KN 弹性模量E 200Mpa 试求AB杆和BC杆横截面上的正应力和伸缩量 2020 2 5 9 解 1 以B点为研究对象 2 求应力 3 求变形量 2020 2 5 10 材料的力学性能 与材料自身性质 加载方式 温度条件有关 是材料在受力过程中表现出的各种物理性质 在常温 静载条件下 塑性材料和脆性材料在拉伸和压缩时的力学性能 拉伸标准试件 圆截面l 10dl 5d 矩形截面 k 11 3k 5 6 三 低碳钢拉伸性能 2020 2 5 11 1 拉伸图和应力 应变图 试验机的自动绘图设备 可在试件拉伸过程中 自动绘出试件所受应力 P A与标距段相应的伸长量 l L的关系曲线 通常称它为拉伸图 下图为低碳钢的拉伸图 2020 2 5 12 2 低碳钢拉伸时的力学性能 2020 2 5 13 变形发展的四个阶段 ob bc cd de 2020 2 5 14 明显的四个阶段 1 弹性阶段ob 比例极限 弹性极限 2 屈服阶段bc 失去抵抗变形的能力 屈服极限 3 强化阶段ce 恢复抵抗变形的能力 强度极限 4 局部径缩阶段ef 2020 2 5 15 两个塑性指标 断后伸长率 断面收缩率 为塑性材料 为脆性材料 低碳钢的 为塑性材料 2020 2 5 16 3 卸载定律及冷作硬化 1 弹性范围内卸载 再加载 2 过弹性范围卸载 再加载 即材料在卸载过程中应力和应变是线形关系 这就是卸载定律 材料的比例极限增高 延伸率降低 称之为冷作硬化或加工硬化 2020 2 5 17 2 其它材料拉伸时的力学性质 对于没有明显屈服阶段的塑性材料 用名义屈服极限 0 2来表示 2020 2 5 18 四 材料压缩时的力学性质 试件和实验条件 常温 静载 2 5 2020 2 5 19 1 塑性材料 低碳钢 的压缩 屈服极限 比例极限 弹性极限 拉伸与压缩在屈服阶段以前完全相同 E 弹性摸量 2020 2 5 20 2020 2 5 21 2 脆性材料 铸铁 的压缩 脆性材料的抗拉与抗压性质不完全相同 压缩时的强度极限远大于拉伸时的强度极限 2020 2 5 22 2020 2 5 23 建筑专业用的混凝土 压缩时的应力 应变图 如图示 混凝土的抗压强度要比抗拉强度大10倍左右 2020 2 5 24 2020 2 5 25 任务引领 图示的阶梯圆轴 AB段直径d1 120mm BC段直径d2 100mm 外力偶矩MeA 22kN m MeB 36kN m MeC 14kN m 试求该轴的最大切应力 任务2 圆轴扭转横截面上的应力应变 2020 2 5 26 观察变形 一 圆轴扭转时横截面上应力分布公式推导方法为 应力分布规律 物理关系 静力学关系 2020 2 5 27 1 各圆周线均绕轴线作相对转动 且各圆周线的形状 大小及它们相互之间的距离都没有变化 2 各纵向线都倾斜了相同的角度 原来的矩形格变成了平行四边形 但各边的长度没有改变 在小变形情况下 只是夹角发生了改变 2020 2 5 28 对圆轴内部的变形可作如下假设 扭转变形前原为平面的横截面 变形后仍保持平面 且其形状 大小都不改变 只是绕轴线相对转过一个角度 两相邻横截面之间的距离也保持不变 这一假设称为圆轴扭转的平面假设 根据圆轴扭转的平面假设和切应力互等定理 剪切胡克定律可知 实心圆轴横截面上各点处 只产生垂直于半径的切应力 沿周向大小不变 方向与该截面的扭矩方向一致 2020 2 5 29 2020 2 5 30 此式表明距圆心为 任一点处的 与到圆心的距离 成正比 等直圆杆扭转实验观察 1 几何变形方面 2020 2 5 31 T 2 物理关系 胡克定律 代入上式得 2020 2 5 32 3 静力学关系 代入物理关系式 2020 2 5 33 横截面上距圆心为 处任一点切应力计算公式 讨论 1 仅适用于各向同性 线弹性材料 在小变形时的等圆截面直杆 2 式中 T 横截面上的扭矩 该点到圆心的距离 Ip 极惯性矩 纯几何量 无物理意义 3 尽管由实心圆截面杆推出 但同样适用于空心圆截面杆 只是Ip值不同 2020 2 5 34 剪应力的计算公式 1 横截面上任意一点剪应力计算 2 最大剪应力计算 当时 表示圆截面边缘处的剪应力最大 IP 截面对形心的极惯性矩是一个几何量 与截面形状及尺寸有关 单位m4mm4 WP 抗扭截面系数 几何量单位m3mm3 2020 2 5 35 圆截面的极惯性矩和抗扭截面系数 空心圆轴 抗扭截面系数 2020 2 5 36 判断下图扭转切应力的分布 对的是哪些 错的是哪些 2020 2 5 37 实心截面 空心截面 工程上采用空心截面构件 提高强度 节约材料 重量轻 结构轻便 应用广泛 2020 2 5 38 二 极惯性矩和抗扭截面系数 1 极惯性矩 对于空心圆轴 2020 2 5 39 式中WP只与截面的几何尺寸和形状有关 称为抗扭截面系数 单位为mm3或m3 横截面上边缘点的切应力最大 其值为 令 三 最大切应力 2020 2 5 40 完成任务 图示的阶梯圆轴 AB段直径d1 120mm BC段直径d2 100mm 外力偶矩MeA 22kN m MeB 36kN m MeC 14kN m 试求该轴的最大切应力 解 1 作扭矩图用截面法求得AB段 BC段的扭矩分别为T1 MeA 22kN mT2 MeC 14kN m作出该轴的扭矩图如图示 2020 2 5 41 2 计算最大切应力由扭矩图可知 AB段的扭矩较BC段的扭矩大 但因BC段轴径较小 所以需分别计算各段轴横截面上的最大切应力 AB段 BC段 比较上述结果 该轴最大切应力位于BC段内任一截面的边缘各点处 即该轴最大切应力为 max 71 3MPa 2020 2 5 42 任务3 平面弯曲的正应力 任务引领 一外伸T型钢梁 梁上荷载如图所示 已知L1 6m L2 2mF 20kN q 10kN m 截面尺寸如图所示 试求梁最大正应力 学习目标 1 平面弯曲 2 3 4 2020 2 5 43 一 弯曲和平面弯曲 1 弯曲 以弯曲变形为主的构件通常称为梁 受力特点 杆件受到垂直于杆件轴线方向的外力或在杆轴线所在平面内作用的外力偶的作用 变形特点 杆轴线由直变弯 2 单跨静定梁的几种形式 悬臂梁 简支梁 外伸梁 2020 2 5 44 3 平面弯曲 工程中常见的梁 其横截面大多为矩形 工字形 T形 十字形 槽形等 它们都有对称轴 梁横截面的对称轴和梁的轴线所组成的平面通常称为纵向对称平面 具有纵向对称面 外力都作用在此面内 弯曲变形后轴线变成对称面内的平面曲线 2020 2 5 45 1 变形前互相平行的纵向直线 变形后变成弧线 且凹边纤维缩短 凸边纤维伸长 2 变形前垂直于纵向线的横向线 变形后仍为直线 且仍与弯曲了的纵向线正交 但两条横向线间相对转动了一个角度 1 平面假设 变形前杆件的横截面变形后仍为平面 2 单向受力假设 各纵向纤维之间互不挤压 纵向纤维均处于单向受拉或受压的状态 因此梁横截面上只有正应力 而无剪应力 二 梁横截面上的应力分布规律 2020 2 5 46 2 物理条件 1 几何条件 2020 2 5 47 2020 2 5 48 3 静力条件 2020 2 5 49 2020 2 5 50 横截面上正应力分布规律 1 受拉区 拉应力 受压区 压应力2 中性轴上应力为零3 沿y轴线性分布 同一坐标y处 正应力相等 既沿截面宽度均匀分布4 最大正应力发生在距中性轴最远处 即截面边缘处 若截面对称于中性轴 则最大拉应力等于最大压应力 2020 2 5 51 2020 2 5 52 简单截面的惯性矩和抗弯截面系数计算公式 型钢查型钢表 2020 2 5 53 任务完成 任务引领 一外伸T型钢梁 梁上荷载如图所示 已知L1 6m L2 2mF 20kN q 10kN m 截面尺寸如图所示 试求梁最大正应力 解 1 求危险截面内力 MB 20 2 40KN m Mc 10 62 8 40 2 25KN mMmax MB 40KN m 2 计算截面性质 3 最大应力 2020 2 5 54 思考题 试计算图示简支矩形截面木梁平放与竖放时的最大正应力 并加以比较 竖放 横放 2020 2 5 55 知识拓展 梁的合理截面 1 根据抗弯截面系数选择合理截面 从抗弯截面系数的计算可以推知 一般情况下 抗弯截面系数与截面高度的平方成正比 所以 合理的截面形状应该是在横截面面积A相等的条件下 比值Wz A尽量大些 1 通过对矩形 圆形 工字形 正方形截面进行理论计算发现 在横截面的面积A相等的情况下 比值Wz A从大到小的截面依次是 工字形 矩形 正方形 圆形 2 通过对具有相同截面面积的实心及空心截面进行理论分析发现 不论截面的几何形状是哪种类型 空心截面的Wz A总是大于实心截面的Wz A 2020 2 5 56 3 对具有相同面积的矩形截面进行理论计算还发现 尽管截面形状和尺寸都没变 只是放置方式不同 中性轴不同 从而使抗弯截面系数不相同 立放的矩形截面Wz A值比平放的矩形截面Wz A值大 若h 2b 梁平放时Wz A b 6 梁竖放时Wz A b 3 2 根据材料特性选择截面 对于抗拉和抗压相同的塑性材料 一般采用对称于中性轴的截面 如圆形 工字形等 对于抗拉和抗压不相同的脆性材料 最好选用关于中性轴不对称的截面 如T形 槽形等 2020 2 5 57 3 采用变截面梁 为了充分利用材料 理想的梁应该是在弯矩大的部位采用大截面 而在弯矩小的部分就采用小截面 使弯矩与截面相对应 这种梁的横截面尺寸在全梁范围内不是一个常数 而是沿着轴线有一定变化的梁称为变截面梁 最理想的变截面梁应该是 梁的每一个横截面上的最大正应力都恰好等于梁所用材料的弯曲许用应力 这种变截面梁称为等强度梁 注意 在建筑工程中 通常是采用形状比较简单又便于加工制作的各种变截面梁 而不采用等强度梁 2020 2 5 58 任务4 平面弯曲的剪应力 任务引领 一外伸T型钢梁 梁上荷载如图所示 已知L1 6m L2 2mF 20kN q 10kN m 截面尺寸如图所示 试求梁最大剪应力 学习目标 1 纯剪切 弯曲剪切 2 纯剪切应力3 弯曲剪切应力4 2020 2 5 59 剪切分为纯剪切和弯曲剪切 它们的应力分布规律不同 2020 2 5 60 一 纯剪切 2020 2 5 61 1 切应力的分布规律 1 切应力的方向与剪力同向平行 2 切应力沿截面宽度均匀分布 即同一横截面上 与中性轴等距离的点切应力均相等 3 切应力沿截面高度按二次抛物线规律分布 距中性轴最远的点处切应力等于零 中性轴上切应力取得该截面上的最大值 其值为 二 弯曲剪切应力 2020 2 5 62 2 横截面上任一点处的剪应力计算公式 推导略 为 FS 横截面上的剪力 Iz 整个横截面对中性轴的惯性矩 S Z 横截面上需求剪应力处的水平线以外 以下或以上 部分面积A 如图 对中性轴的静矩 b 需求剪应力处横截面的宽度 3 矩形截面剪应力沿截面高度的分布按二次抛物线规律分布 上下边缘处剪应力为零 中性轴上剪应力最大 2020 2 5 63 2 工字形截面梁的剪应力 腹板上的剪应力沿腹板高度按抛物线规律变化 4 圆截面梁的最大剪应力 最大剪应力发生在中性轴上 最大剪应力发生在中性轴上 工字钢翼缘上承担了绝大部分弯矩 腹板上承担绝大部分剪力 2020 2 5 64 任务完成 任务引领 一外伸T型钢梁 梁上荷载如图所示 已知L1 6m L2 2mF 20kN q 10kN m 截面尺寸如图所示 试求梁最大剪应力 解 1 求危险截面内力 FSmax FB左 60KN 2 计算截面性质 3 剪应力计算 2020 2 5 65 任务5 组合变形应力计算 任务驱动 所示的起重架 14号工字钢 WZ 102cm3A 21 5cm2 横梁长5m 自重G1 10kN 起吊重物G2 20KN 300 lAD 4m 试求横梁最大正应力 2020 2 5 66 复习回顾 四种基本变形计算 变形轴向拉压剪切扭转平面弯曲A 外力轴向力横向力外力偶横向力或外力偶 内力轴力 剪力 Q 扭矩 z 剪力 Q 弯矩 M 应力正应力剪应力剪应力剪应力正应力 计算公式 分布规律 2020 2 5 67 一 组合变形 1 组合变形 受力构件产生的变形是由两种或两种以上的基本变形组合而成的 斜弯曲 偏心拉伸 压缩 2020 2 5 68 2 叠加原理及方法 1 叠加原理 弹性范围小变形情况下 各荷载分别单独作用所产生的应力 变形等可叠加计算 2 计算方法 先分解 后叠加 先分解 应先分解为各种基本变形 分别计算各基本变形 后叠加 将基本变形计算某量的结果叠加即得组合变形的结果 2020 2 5 69 危险点的确定 对于具有凸角又有两条对称轴的截面 矩形 工字形 最大拉压应力在D1 D2点 且 max max 二 斜弯曲变形计算 2020 2 5 70 三 弯压 拉 组合 min max 2020 2 5 71 四 偏心拉伸 压缩 外力与杆轴线平行但不重合 杆件产生轴向拉压与纯弯曲组合的变形 1 单向偏心拉伸 压缩 外力作用在截面的一条形心主轴上 2020 2 5 72 单向偏心压缩时 距偏心力较近的一侧边缘总是产生压应力 而最大正应力总是发生在距偏心力较远的另一侧 其值可能是拉应力 也可能是压应力 2020 2 5 73 2 双向偏心拉伸 压缩 1 外力分析 2 内力分析 3 应力计算 A B C D 2020 2 5 74 2020 2 5 75 任务完成 所示的起重架 14号工字钢 WZ 102cm3A 21 5cm2 横梁长5m 自重G1 10kN 起吊重物G2 20KN 300 lAD 4m 试求横梁最大正应力 解1 计算横梁的外力 以D点为研究对象 2 计算横梁的内力 Mmax 22 5kN FN 72 7KN 3 计算横梁的最大应力 2020 2 5 76 3 任务6 平面应力状态 一 应力状态 低碳钢拉伸试验 试验表明 45度方向的剪应力引起 滑移 产生屈服 铸铁扭转试验 试验表明 45度方向的拉应力引起断裂破坏 1 2 2020 2 5 77 F 斜截面上的正应力 斜截面上的切应力 拉 压 杆斜截面上的应力 横截面 是指垂直杆轴线方向的截面 斜截面 是指任意方位的截面 2020 2 5 78 及 均是角 的函数 1 当 0 即为横截面时 2 当 3 当 即在平行与杆轴的纵向截面上无任何应力 轴向拉压杆件的最大正应力发生在横截面上 轴向拉压杆件的最大切应力发生在与杆轴线成450截面上 讨论 2020 2 5 79 1 应力状态的概念引入 当危险点处既有正应力 又有切应力存在时 前述的强度条件就不再适用 强度条件如何建立 需要分析危险点的应力状态 即 一点处的应力状态 并在此基础上建立新的强度条件 一点处的应力状态 一点各个方向面上的应力情况的总称 单元体 围绕某点取出一个微小的正六面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能交通枢纽项目施工安全管理及质量保障合同
- 2025年多功能仓储解决方案销售返利及优惠政策合同
- 2025年度职工跨区域调动劳动合同转移与体检服务协议
- 2025年京津冀地区大型活动专用客车租赁合同
- 出租车承包合同协议书范本
- 金昌公务员面试题及答案
- 公司员工劳务合同
- 涉税专业知识培训课件
- 2025年工业互联网平台计算机视觉缺陷检测在汽车零部件制造中的应用研究报告
- 2025年基层医疗卫生机构信息化建设与医疗信息化技术应用创新策略报告001
- GB 21256-2025粗钢生产主要工序单位产品能源消耗限额
- 2025AI办公发展现状软件市场竞争格局及未来发展前景分析报告
- 北京员工待岗管理办法
- 停工缓建项目管理办法
- 淋巴水肿健康科普
- 采购应急计划管理办法
- 上海选调生面试题和考官用题本及答案21套
- 2025年学校食堂从业人员食品安全知识培训考试试题及答案
- 2025年国家电投校园招聘笔试考点考试题库及答案
- 让情绪有着落-2025年情绪营销8大趋势洞察报告
- 教师校园安全培训课件
评论
0/150
提交评论