




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题能力训练12空间几何体专题能力训练第30页一、能力突破训练1.球的体积为43,平面截球O的球面所得圆的半径为1,则球心O到平面的距离为()A.1B.2C.3D.6答案:B解析:依题意,设该球的半径为R,则有43R3=43,解得R=3,因此球心O到平面的距离d=R2-12=2.2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.B.34C.2D.4答案:B解析:设圆柱的底面半径为r,球的半径为R,且R=1,由圆柱两个底面的圆周在同一个球的球面上可知,r,R及圆柱的高的一半构成直角三角形.r=12-122=32.圆柱的体积为V=r2h=341=34.故选B.3.在棱长为3的正方体ABCD-A1B1C1D1中,P在线段BD1上,且BPPD1=12,M为线段B1C1上的动点,则三棱锥M-PBC的体积为()A.1B.32C.92D.与M点的位置有关答案:B解析:BPPD1=12,点P到平面BC1的距离是D1到平面BC1距离的13,即为D1C13=1.M为线段B1C1上的点,SMBC=1233=92,VM-PBC=VP-MBC=13921=32.4.已知平面截球O的球面得圆M,过圆心的平面与的夹角为6,且平面截球O的球面得圆N.已知球的半径为5,圆M的面积为9,则圆N的半径为()A.3B.13C.4D.21答案:B解析:如图,OA=5,AM=3,OM=4.NMO=3,ON=OMsin3=23.又OB=5,NB=OB2-ON2=13,故选B.5.已知三棱柱ABC-ABC的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为3,AB=2,AC=1,BAC=60,则此球的表面积是()A.2B.4C.8D.10答案:C解析:根据余弦定理可知,BC=3,则ACB=90.如图,点E,F分别是斜边AB,AB的中点,点O为EF的中点,则点O为三棱柱外接球的球心,连接OA.设三棱柱的高为h,V=1213h=3,解得h=2,R2=OA2=12AB2+12h2,代入可得R2=1+1=2,所以此球的表面积为S=4R2=8.6.已知三棱锥A-BCD内接于半径为5的球O中,AB=CD=4,则三棱锥A-BCD的体积的最大值为()A.43B.83C.163D.323答案:C解析:如图,过CD作平面ECD,使AB平面ECD,交AB于点E,设点E到CD的距离为EF,当球心在EF上时,EF最大,此时E,F分别为AB,CD的中点,且球心O为EF的中点,所以EF=2,所以Vmax=1312424=163,故选C.7.在四面体ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,则四面体ABCD的外接球的表面积为.答案:772解析:构造一个长方体,使得它的三条面对角线长分别为4,5,6,设长方体的三条边长分别为x,y,z,则x2+y2+z2=772,而长方体的外接球就是四面体的外接球,所以S=4R2=772.8.如图所示,图中阴影部分绕AB旋转一周所形成的几何体的体积为.答案:1403解析:由题知,旋转一周后形成的几何体是一个圆台去掉一个半球,其中圆台的体积为V=13(22+2252+52)4=52,半球的体积V=124323=163,则所求体积为52-163=1403.9.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角为45.若SAB的面积为515,则该圆锥的侧面积为.答案:402解析:设O为底面圆圆心,cosASB=78,sinASB=1-782=158.SASB=12|AS|BS|158=515.SA2=80.SA=45.SA与圆锥底面所成的角为45,SOA=90,SO=OA=22SA=210.S圆锥侧=rl=45210=402.10.已知正四棱锥P-ABCD中,PA=23,则当该正四棱锥的体积最大时,它的高h等于.答案:2解析:设正四棱锥P-ABCD的底面边长为a,PA=23,2a22+h2=12,即a22+h2=12,故a2=24-2h2,正四棱锥P-ABCD的体积V=13a2h=8h-23h3(h0),V=8-2h2.令V0,得0h2,令V2,当h=2时,正四棱锥P-ABCD的体积取得最大值.11.如图,在长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面把该长方体分成的两部分体积的比值.解:(1)交线围成的正方形EHGF如图所示.(2)作EMAB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH=EH2-EM2=6,AH=10,HB=6.因为长方体被平面分成两个高为10的直棱柱,所以其体积的比值为9779也正确.12.如图所示,等腰三角形ABC的底边AB=66,高CD=3,点E是线段BD上异于点B,D的动点,点F在BC边上,且EFAB,现沿EF将BEF折起到PEF的位置,使PEAE,记BE=x,V(x)表示四棱锥P-ACFE的体积,求V(x)的最大值.解:因为PEEF,PEAE,EFAE=E,所以PE平面ABC.因为CDAB,FEAB,所以EFCD,所以EFCD=BEBD,即EF3=x36,所以EF=x6,所以SABC=12663=96,SBEF=12xx6=612x2,所以V(x)=1396-612x2x=63x9-112x2(0x0,V(x)单调递增;当6x36时,V(x)0,V(x)单调递减,因此当x=6时,V(x)取得最大值126.二、思维提升训练13.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1,球O的体积为V2,则V1V2的值是.答案:32解析:设球O的半径为r,则圆柱O1O2的高为2r,故V1V2=r22r43r3=32,答案为32.14.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,DBC,ECA,FAB分别是以BC,CA,AB为底边的等腰三角形,沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D,E,F重合,得到三棱锥.当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.答案:415解析:如图所示,连接OD,交BC于点G.由题意知ODBC,OG=36BC.设OG=x,则BC=23x,DG=5-x,三棱锥的高h=DG2-OG2=25-10x+x2-x2=25-10x.因为SABC=1223x3x=33x2,所以三棱锥的体积V=13SABCh=3x225-10x=325x4-10x5.令f(x)=25x4-10x5,x0,52,则f(x)=100x3-50x4.令f(x)=0,可得x=2,则f(x)在(0,2)单调递增,在2,52单调递减,所以f(x)max=f(2)=80.所以V380=415,所以三棱锥体积的最大值为415.15.若三棱锥S-ABC的所有顶点都在球O的球面上,SA平面ABC,SA=215,AB=1,AC=2,BAC=60,则球O的表面积为.答案:64解析:如图,三棱锥S-ABC的所有顶点都在球O的球面上,因为AB=1,AC=2,BAC=60,所以BC=3,所以ABC=90.所以ABC截球O所得的圆O的半径r=1.设OO=x,球O的半径为R,则R2=x2+12,R2=(SA-x)2+12,所以x2+1=(215-x)2+1,解得x=15,R2=(15)2+12,R=4.所以球O的表面积为4R2=64.16.如图,在矩形ABCD中,AB=4,BC=3,沿对角线AC把矩形折成二面角D-AC-B(如图),并且点D在平面ABC内的射影落在AB上.(1)证明:AD平面DBC;(2)若在四面体D-ABC内有一球,问:当球的体积最大时,球的半径是多少?(1)证明设D在平面ABC内的射影为H,则H在AB上,连接DH,如图,则DH平面ABC,得DHBC.又ABBC,ABDH=H,所以BC平面ADB,故ADBC.又ADDC,DCBC=C,所以AD平面DBC.(2)解当球的体积最大时,易知球与三棱锥D-ABC的各面相切,设球的半径为R,球心为O,则VD-ABC=13R(SABC+SDBC+SDAC+SDAB).由已知可得SABC=SADC=6.过点D作DGAC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商场活动促销方案模板
- 新质生产力与数字经济关系
- 2025年口腔医学影像学知识考察答案及解析
- 工程力学 课件 剪切的概念
- 新质生产力创新的核心要素
- 2025年急诊医学危重症处理技能模拟考试答案及解析
- 2025年内分泌科糖尿病合并症危重病例处理模拟考试答案及解析
- 2025年妇产科妊娠合并糖尿病临床管理规范论述题考试卷答案及解析
- 2025年病理学疑难病例解剖讨论答案及解析
- 2025年流行病学慢性非传染性疾病流行规律研究模拟试卷答案及解析
- 茶叶质量安全培训课件
- 以语文为翼筑高中生健康心理之基:高中语文教学中的心理健康教育探索
- 安全副总经理岗位职责
- 中国移民史与典型移民事件
- MSA2022年第2号氢燃料电池动力船舶技术与检验暂行规则
- 患者发生病情变化应急预案
- 中国写意花鸟课件
- 食品安全事故流行病学调查技术指南
- 小学班级培优辅差课后服务计划
- 火力发电原理课件
- 学校五常法管理制度
评论
0/150
提交评论