中考数学复习 第三章函数及其图象 第15课 函数的应用课件.ppt_第1页
中考数学复习 第三章函数及其图象 第15课 函数的应用课件.ppt_第2页
中考数学复习 第三章函数及其图象 第15课 函数的应用课件.ppt_第3页
中考数学复习 第三章函数及其图象 第15课 函数的应用课件.ppt_第4页
中考数学复习 第三章函数及其图象 第15课 函数的应用课件.ppt_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第15课函数的应用 1 函数的应用主要涉及到经济决策 市场经济等方面的应用 2 利用函数知识解应用题的一般步骤 1 设定实际问题中的变量 2 建立变量与变量之间的函数关系 如 一次函数 二次函数或其他复合而成的函数式 3 确定自变量的取值范围 保证自变量具有实际意义 4 利用函数的性质解决问题 5 写出答案 3 利用函数并与方程 组 不等式 组 联系在一起解决实际生活中的利率 利润 租金 生产方案的设计问题 要点梳理 1 理解实际问题与函数的关系 建立函数模型函数是刻画现实世界运动变化和变量相依关系的重要数学模型之一 它有着广泛的应用 国情国策 生产生活 环保生态 商场经营 经济核算 规划策略等许多问题都与函数有关 用函数的知识解决实际问题要注意对问题的审读和理解 恰当地分析 整合信息 将已知条件转化为相应的数学关系式 用函数的知识解决实际问题的关键是将实际问题中的数量关系抽象 转化为数学问题 建立函数模型 进而运用函数的有关性质 求出问题的答案 难点正本疑点清源 2 认真审题 提高分析问题 解决问题的能力用函数的知识解决实际问题 除了可能涉及函数的有关知识外 有时还会涉及方程 不等式 几何等知识 这些知识相互联系融为一体 需要一定的阅读理解能力 收集处理信息的能力 以及观察 归纳 探索 发现 推理从而解决问题的能力 1 2011 南充 小明乘车从南充到成都 行车的平均速度v km h 和行车时间t h 之间的函数图象是 解析 设南充到成都的路程为s km 则v s 0 函数图象是双曲线分布于第一象限的一个分支 基础自测 b 2 2011 鸡西 若a x1 y1 b x2 y2 c x3 y3 是反比例函数y 图象上的点 且x1 x2 0 x3 则y1 y2 y3的大小关系正确的是 a y3 y1 y2b y1 y2 y3c y2 y1 y3d y3 y2 y1解析 因为x3 0 则y3 0 又x10 y1 y2 a 3 a b c三种物质的质量与体积的关系如图所示 表示物质的密度 由图可知 a a b c 且 c 水b a b c 且 a 水c a 水d a 水解析 密度 由图象可知 a b c 又 a 这里0 51000 即 a 水所以应选b b 4 2011 河北 一小球被抛出后 距离地面的高度h 米 和飞行时间t 秒 满足下面的函数关系式 h 5 t 1 2 6 则小球距离地面的最大高度是 a 1米b 5米c 6米d 7米解析 由关系式h 5 t 1 2 6得 当t 1时 h有最大值6 c 5 2010 荷泽 某种气球内充满了一定质量的气体 当温度不变时 气球内气体的气压p kpa 是气球体积v的反比例函数 其图象如图所示 当气球内的气压大于120kpa时 气球将爆炸 为了安全 气球的体积应该 a 不小于m3b 小于m3c 不小于m3d 小于m3解析 设p 则k 60 1 6 96 p 当p 120时 v 当p 120时 v c 题型分类深度剖析 题型一一次函数相关应用题 例1 某公司装修需用a型板材240块 b型板材180块 a型板材规格是60cm 30cm b型板材规格是40cm 30cm 现只能购得规格是150cm 30cm的标准板材 一张标准板材尽可能多地裁出a型 b型板材 共有下列三种裁法 图是裁法一的裁剪示意图 设所购的标准板材全部裁完 其中按裁法一裁x张 按裁法二裁y张 按裁法三裁z张 且所裁出的a b两种型号的板材刚好够用 1 上表中 m n 2 分别求出y与x和z与x的函数关系式 解 由题意得x 2y 240 2x 3z 180 y 120 x z 60 x 0 3 3 若用q表示所购标准板材的张数 求q与x的函数关系式 并指出当x取何值时q最小 此时按三种裁法各裁标准板材多少张 解 由题意得q x y z x 180 x 解得x 90 注 事实上0 x 90且x是6的整数倍 由一次函数的性质可知 当x 90时 q最小 此时按三种裁法分别裁90张 75张 0张 探究提高审清题意 找到等量关系 可写出两个函数关系式 然后求出用含x的代数式表示q 利用x的取值范围确定q的最小值 知能迁移1 2010 吉林 一列长为120米的火车匀速行驶 经过一条长为160米的隧道 从车头驶入隧道入口到车尾离开隧道出口共用14秒 设车头驶入隧道入口x秒时 火车在隧道内的长度为y米 1 求火车行驶的速度 2 当0 x 14时 求y与x的函数关系式 3 在给出的平面直角坐标系中画出y与x的函数图象 解 1 解法一 设火车行驶的速度为v米 秒 根据题意 得14v 120 160 解得v 20 解法二 120 160 14 20 答 火车行驶的速度为20米 秒 2 当0 x 6 y 20 x 当6 x 8时 y 120 解法一 当8 x 14时 y 120 20 x 160 20 x 280 解法二 当8 x 14时 y 20 14 x 20 x 280 3 题型二反比例函数相关应用题 例2 水产公司有一种海产品共2104千克 为寻求合适的销售价格 进行了8天试销 试销情况如下 观察表中数据 发现可以用反比例函数刻画这种海产品的每天销售量y 千克 与销售价格x 元 千克 之间的关系 现假定在这批海产品的销售中 每天的销售量y 千克 与销售价格x 元 千克 之间都满足这一关系 1 写出这个反比例函数的解析式 并补全表格 2 在试销8天后 公司决定将这种海产品的销售价格定为150元 千克 并且每天都按这个价格销售 那么余下的这些海产品预计要用多少天可以全部售出 解 1 函数解析式为y 表格空白处 300 50 2 2014 30 40 48 50 60 80 96 100 1600 即8天试销后 余下的海产品还有1600千克 当x 150时 80 1600 80 20 天 所以余下的这些海产品预计再用20天可以全部售出 探究提高问题中已经给出了基本数量关系 由此可确定函数关系式 利用函数关系解题时 要理解已知数的意义 弄清已知数对应的是自变量还是函数值 正确代入 知能迁移2人的视觉机能受运动速度的影响很大 行驶中的司机在驾驶室内观察前方物体时是动态的 车速增加 视野变窄 当车速为50km h时 视野为80度 如果视野f 度 是车速v km h 的反比例函数 求f v之间的关系式 并计算当车速为100km h时视野的度数 解 f v之间的关系式f 当v 100时 f 40 答 当车速为100km h时 视野的度数为40度 题型三二次函数相关应用题 例3 如图 某公路隧道横截面为抛物线 其最大高度为6米 底部宽度om为12米 现以o点为原点 om所在直线为x轴建立直角坐标系 1 直接写出点m及抛物线顶点p的坐标 2 求这条抛物线的解析式 3 若要搭建一个矩形 支撑架 ad dc cb 使c d点在抛物线上 a b点在地面om上 则这个 支撑架 总长的最大值是多少 解 1 m点的坐标为 12 0 顶点p的坐标为 6 6 2 设抛物线为y a x 6 2 6 抛物线y a x 6 2 6经过点 0 0 0 a 0 6 2 6 36a 6 a 抛物线解析式为 y x 6 2 6 x2 2x 3 设a m 0 则b 12 m 0 c 12 m m2 2m d m m2 2m 支撑架 总长ad dc cb 12 2m m2 2m 12 m 3 2 15 a 0 当m 3时 ad dc cb有最大值为15米 探究提高根据图形特点 建立恰当的平面直角坐标系 将实际问题转化为数学问题 建立平面直角坐标系时 要尽量将图形放置于特殊位置 这样便于解题 知能迁移3如图 足球场上守门员在o处开出一高球 球从离地面1米的a处飞出 a在y轴上 运动员乙在距o点6米的b处发现球在自己头的正上方达到最高点m 距地面约4米高 球落地后又一次弹起 据实验测算 足球在草坪上弹起后的抛物线与原来的抛物线形状相同 最大高度减少到原来最大高度的一半 1 求足球开始飞出到第一次落地时 该抛物线的表达式 2 足球第一次落地点c距守门员多少米 取4 7 3 运动员乙要抢到第二个落点d 他应再向前跑多少米 取2 5 解 1 设第一次落地时 抛物线的表达式为y a x 6 2 4 由已知得 x 0时 y 1 1 36a 4 a 抛物线的表达式为y x 6 2 4 2 令y 0 则 x 6 2 4 0 x 6 2 48 x1 4 6 13 x2 4 6 0 舍去 足球第一次落地距守门员约13米 3 oc 13 c点坐标为 13 0 设球落地后又一次弹起的抛物线的表达式为y x k 2 2 0 13 k 2 2 解之得k1 13 2 18 k2 13 2 13 舍去 y x 18 2 2 令y 0 得 x 18 2 2 0 解之得x1 18 2 23 x2 18 2 舍去 bd 23 6 17 答 运动员乙应再向前跑17米 例4 我市某工艺厂为配合伦敦奥运 设计了一款成本为20元 件的工艺品投入市场进行试销 得到如下数据 1 把上表中x y的各组对应值作为点的坐标 在右面的平面直角坐标系中描出相应的点 猜想y与x的函数关系 并求出函数关系式 2 当销售单价定为多少时 工艺厂试销该工艺品每天获得的利润最大 最大利润是多少 利润 销售总价 成本总价 3 当地物价部门规定 该工艺品销售单价最高不能超过45元 件 那么销售单价定为多少时 工艺厂试销该工艺品每天获得的利润最大 解题示范 规范步骤 该得的分 一分不丢 解 1 画图 由图可猜想y是x的一次函数 设y kx b 图象过 30 500 40 400 这两点 解得 y 10 x 800 5分 2 设该工艺厂试销工艺品每天获得的利润是w元 w x 20 10 x 800 10 x2 1000 x 16000 10 x 50 2 9000 当x 50时 w有最大值9000 当销售单价定为50元 件时 工艺厂每天获得的利润最大 最大利润9000元 10分 3 对于w 10 x 50 2 9000 当x 45时 w值随x的增大而增大 当销售单价定为45元 件时 工艺厂每天获得的利润最大 12分 探究提高建立合适的函数模型 利用已知条件求出函数解析式 根据函数性质解答问题 知能迁移4 2011 盐城 利民商店经销甲 乙两种商品 现有如下信息 请根据以上信息 解答下列问题 1 甲 乙两种商品的进货单价各多少元 2 该商店平均每天卖出甲商品500件和乙商品300件 经调查发现 甲 乙两种商品零售单价分别每降0 1元 这两种商品每天可各多销售100件 为了使每天获取更大的利润 商店决定把甲 乙两种商品的零售单价都下降m元 在不考虑其他因素的条件下 当m定为多少时 才能使商店每天销售甲 乙两种商品获取的利润最大 每天的最大利润是多少 解 1 设甲商品的进货单价是x元 乙商品的进货单价是y元 根据题意 得解得答 甲商品的进货单价是2元 乙商品的进货单价是3元 2 设商店每天销售甲 乙两种商品获取的利润为s元 则s 1 m 500 100 5 3 m 300 100 即s 2000m2 2200m 1100 2000 m 0 55 2 1705 当m 0 55时 s有最大值 最大值为1705 答 当m定为0 55时 才能使商店每天销售甲 乙两种商品获取的利润最大 每天的最大利润是1705元 9 注重养成良好的解题习惯试题杭州休博会期间 嘉年华游乐场投资150万元引进一项大型游乐设施 若不计维修保养费用 预计开放后每月可创收33万元 而该游乐场开放后 从第1个月到第x个月的维修保养费用累计为y 万元 且y ax2 bx 若将创收扣除投资和维修保养费用称为游乐场的纯收益g 万元 g也是关于x的二次函数 1 若维修保养费用第1个月为2万元 第2个月为4万元 求y关于x的解析式 2 求纯收益g关于x的解析式 3 问设施开放几个月后 游乐场的纯收益达到最大 几个月后 能收回投资 易错警示 学生答案展示解 1 由题意 得x 1 y 2 x 2 y 4 代入y ax2 bx中 有解得故y 2x 2 纯收益g 33x 150 2x 31x 150 3 由g 31x 150 可知x越大 g越大 则纯收益无最大值 要收回成本 即g 0 x 4时 g 260 5个月后 能收回投资 剖析这种解法中没有认真读题 审题 忽略题中 累计 二字 误以为x 2时y 4 而应该是 x 2时 y 2 4 6 这个理解的失误 导致后面的两问虽然思路正确 但由于x的关系式出错 2 3 问都错了 正解 1 由题意 得x 1时 y 2 x 2时 y 2 4 6 代入y ax2 bx中 有解得故y x2 x 2 纯收益g 33x 150 x2 x x2 32x 150 3 g x2 32x 150 x 16 2 106 x 16时 g有最大值 即设施开放16个月后游乐场的纯收益最大 由二次函数的增减性可知 当00 所以6个月后 能收回成本 批阅笔记在建立函数关系解实际问题时 要想建立正确的函数关系 必须养成良好的解题习惯 审题的粗枝大叶让本属于自己的分数失之交臂 要养成良好的解题习惯 从每天的课内 外练习做起 不断提升自己的审题和解题的正确率 方法与技巧1 解决实际问题时的基本思路 理解问题 分析问题中的变量和常量 用函数表达式表示出它们之间的关系 利用函数的有关性质进行求解 检验结果的合理性 对问题加以拓展等 2 实际问题中函数解析式的求法 设x为自变量 y为x的函数 在求解析式时 一般与列方程解应用题一样先列出关于x y的二元方程 再用含x的代数式表示y 最后还要写出自变量x的取值范围 思想方法感悟提高 3 中考常见题型 1 选择题 关键 读懂函数图象 学会联系实际 2 综合题 关键 运用数形结合思想 3 求运动过程中的函数解析式 关键 以静制动 失误与防范1 函数问题是初中阶段较为复杂的问题之一 找出题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论