




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十一讲 三角问题选讲三角既是一个数学分支,同时也是一种数学方法三角函数是沟通形与数的联系的有力工具,在各数学分支中有着广泛的应用三角方法是指主动地、有意识地实施三角代换,将一些代数、几何问题迁移到三角函数情境中来,利用三角体系完整的公式去简化、解决问题同时,借助于三角公式,也可将三角问题转化为代数或其他问题进行求解另外,三角原于测量与解三角形,三角函数理论在解决生产、科研和日常生活中的实际问题中也有着广泛的应用A类例题例1 函数 R) 的最小值是 .(2005年江苏省数学竞赛)分析 题中函数含x与2x的三角函数,可考虑先用三角公式化为x的三角函数,再寻求解题方法解 令 ,则 当 时, ,得 ;当 时, ,得 又 可取到 , 故填 说明 三角函数的问题有时也可通过变量代换的方法将其转化为代数问题进行求解,实施转化的前提是熟练掌握和深刻理解三角的公式,如本题抓住二倍角的余弦可表示为单角余弦的二次式这一特征,从而作出相应的变量代换例2 求方程的实数解分析 这是一个具有对称性的无理方程,可考虑用三角代换去掉根号,化有三角方程求解,由于根号里面为x-1与y-1,故联想公式sec2-1=tan2,可进行如下变换:x=sec2,y=sec2解 由题意知x1,y1,可设x=sec2,y=sec2,其中,从而x-1= sec2-1=tan2,y-1= sec2-1=tan2,原方程可化为:sec2tan+ sec2tan=sec2sec2,即,因此有sincos+sincos=1,即sin2+sin2=2,从而sin2=1,sin2=1,因此x=y=2,经检验,x=2,y=2是原方程的解说明 施行适当的三角代换,将代数式或方程转化为三角式或方程求解,这是三角代换应用的一个重要方面,充分体现了三角与代数之间的内在联系例3 已知正三角形ABC内有一条动线段,长为a,它在ABC三边AB、BC、AC上的射影长分别为l、m、n求证:分析 动线段在三角形各边上的射影可由动线段的长a和动线段与各边所成角表示出来,因此问题的关键是如何表示出动线段与各边所成角解 设动线段为PQ,长为a,设PQ与BC所成角为(090),则PQ与AC所成角为60-,PQ与AB所成角为60+,于是有l=acos(60+),m=acos,n=acos(60-),因此有l2+m2+n2=a2cos2(60+)+ cos2+ cos2(60-),而cos2(60+)+ cos2+ cos2(60-)=, 说明 本题也可以利用向量知识求解,读者不妨一试情景再现1若,则的取值范围是A B C D (2005年浙江省数学竞赛)2求所有的实数x0,使,并证明你的结论3ABC的三条边长分别为a、b、c求证:(2005年江西省数学竞赛)B类例题例4 ABC的内角满足试判断ABC的形状分析 所给三式结构相同,可将视为的三组解,而又可看作直线方程,又可看作曲线上的三个点,因此本题可考虑用解析几何的方法去求解证明 由题意,为方程的三组解,因此以其为坐标的三点M、N、P都在直线上,又都满足方程,因此三点M、N、P又都在曲线上,所以三点M、N、P都为曲线与直线的交点,而直线与抛物线至多有两个交点,因此M、N、P至少有两个点重合,不妨设M与N重合,则由得A=B,故三角形ABC是等腰三角形例5已知三个锐角满足求的最大值分析 注意到条件,联想长方体的性质,构造长方体来求解解 构造长方体,使分别为对角线与三个面所成角,则,设长方体长、宽、高、对角线分别为a、b、c、l,则, ,从而,当且仅当时取等号,因此的最大值为说明 构造几何模型,使三角关系形象化、具体化,构造法是用几何方法解决三角问题的常用方法例6 给定正整数n和正数M,对于满足条件a12+an+12M的所有等差数列an,求S=an+1+ an+2+ a2n+1的最大值(1999年全国联赛一试)分析 本题有多种解法,由条件a12+an+12M,也可考虑作三角代换,利用三角函数的有界性求解解 设,则,因此最大值为例7 设ABC内有一点P,满足PAB=PBC=PCA=求证:cot=cotA+cotB+cotC.分析 设三边为a、b、c,PA、PB、PC分别为x、y、z,可考虑利用正弦定理、余弦定理来表示出边角关系,进而证明本题解 对三个小三有形分别使用余弦定理得:y2=x2+c2-2xccos,z2=y2+a2-2yacos,x2=z2+b2-2zbcos,三式相加得:2(ay+bz+cx)cos=a2+b2+c2,又由正弦定理知,SABC= SABP+SPBC+SPAC=(xc+ay+bz)sin,两式相除得:,又在ABC中,由余弦定理有a2=b2+c2-2bccosA,b2=c2+a2-2cacosB,c2=a2+b2-2abcosC,相加得,a2+b2+c2=2abcosC+2bccosA+2accosB,从而,又4SABC=2absinC=2bcsinA=2acsinB,分别代入上式右边的三个分母即得:cot=cotA+cotB+cotC.说明 合理利用正弦定理、余弦定理可解决平面几何中的一些边角关系式的证明情景再现4如图,一块边长为20cm的正方形铁片ABCD已截去了一个半径为r cm(r(0,20)的扇形AEF(四分之一个圆),用剩下部分截成一个矩形PMCN,怎样截可使此矩形面积最大?最大面积为多少?5求满足下式的锐角x:6P是ABC的内心,R、r分别为ABC外接圆和内切圆的半径求证:6rPA+PB+PC3R.C类例题 例8 给定曲线族,为参数,求该曲线在直线上所截得的弦长的最大值(1995年全国联赛二试)分析 显然,该曲线族恒过原点,而直线也过原点,所以曲线在直线上所截得的弦长仅取决于曲线族与的另一交点的坐标解法一 把代入曲线族方程得:,又,故x0时,就有,令,则,得2xu2+2(x-4)u+(x-1)=0,由uR知,当x0时,=2(x-4)2-8x(x-1)=4(-x2-6x+16)0,从而-8x2且x0,因此|x|max=8,由得,弦长为,从而弦长的最大值为解法二 曲线族与直线相交于(0,0)及另一点,且满足,故存在,使得,解得,弦长为,从而弦长的最大值为 说明 方法一主要是应用万能公式,将三角问题转化成代数问题求解,方法二利用的有界性求解,方法更为巧妙例9 求证:sinn2x+(sinnx-cosnx)21,其中nN*.(2000年俄罗斯数学竞赛题) 分析:即证2nsinnxcosnx+sin2nx+cos2nx-2 sinnxcosnx1,即证sin2nx+cos2nx+(2n-2) sinnxcosnx1,显然可考虑将右边的1代换成(sin2x+cos2x)n,并展开进行证明证 1=(sin2x+cos2x)n=,同理1=( cos2x+sin2x)n=,两式对应项相加得:2=,保留第一个括号与最后一个括号内的式子不动,由基本不等式得,其中k为偶数因此其它各个括号内的式子均不小于,从而有2+,即1+,即有2nsinnxcosnx+sin2nx+cos2nx-2 sinnxcosnx1,即sinn2x+(sinnx-cosnx)21情景再现7三棱锥V-ABC的三条棱VA、VB、VC两两垂直,三个侧面与底面所成的二面角大小分别为求证:8设a、b、c为ABC的三条边,abc,R和r分别为ABC的外接圆半径和内切圆半径令f=a+b-2R-2r,试用C的大小来判定f的符号习题1若均是整数(其中),且使得,则的值是2设nN,nsin15cos1+1,则n的最小值是( ) A4 B5 C6 D73求证:,4设凸四边形ABCD之对角线交于点P,APB=,求证:(四边形的余弦定理)5在直角三角形中,为斜边长,分别表示该三角形的面积和内切圆的半径,求的取值范围6若x、y、z中的每个数恰好等于其余两数和的余弦求证:x=y=z7已知集合T,集合,试求最大正数,使得集合T为集合S的子集8已知中,为任意非零实数,求证:,其中当且仅当时等号成立9求函数的值域10已知,用三角方法证明:11点P在ABC内求证:acosA+bcosB+ccosCPAsinA+PBsinB+PCsinC12设,求证:本节“情景再现”解答: 1解:设 , 又由 ,故 因此有 ,即 由于,所以有 ,即 选D2解:令,即,于是从而有,即,注意是上述方程的解,故,由于,所以,于是从而,方程有唯一解故原方程有唯一解3 证明:即证:,注意到:,故只要证而当且仅当A=B=C时等号成立4解 以A为原点,射线AB为x轴正半轴,建立直角坐标系,设PAE=,则C(20,20),P(rcos,rsin),0,令矩形PMCN面积为S,则S=(20-rcos)(20-rsin)=400-20r(cos+sin)+r2sincos,令cos+sin=a,则sincos=,则S=,(1)当即时,若S取得最大值,则,(2)当,即时,若S取得最大值,则(3)当,即时,若S取得最大值,则5解:将原式变为余弦定理的形式:据此,可作共边的两个三角形ACD、BCD,(如图),使AC=,CD=,BC=2,ACD=x,BCD=,依题意有AD+BD=4,连AB,在RtABC中,AB=,故点D在AB上,有面积等式SACD+SBCD=SABC,即,即,即,又 x为锐角,故6证明:APB=,由正弦定理得:,于是,同理可得,故PA+PB+PC=4R(+)4R()24R =3R再作PHAB于H,则PH=r,PA=,同理:PB=,PC=从而PA+PB+PC=+r3综上所述,6rPA+PB+PC3R.7证明:可先证,作VO平面ABC于O,ODAB于D,则VDO=令VA=a,VB=b,VC=c,则,同理可得,所以,再证8解:由三角形相关知识有:,因此f=2R,又,因此,故,则;, “习题”解答:1解:选B所以,2解:由sinsin1,cos1cos得,nsinnsin15cos1+11+5cos,因此n,因此n的最小值是5,选B3解:这是与自然数有关的命题,可以考虑用数学归纳法来证明当时,证明如下:4证明:不妨设PA、PB、PC、PD的长分别为a、b、c、d,则有AD2=a2+d2+2adcos,BC2=b2+c2+2bccos,AB2=a2+b2-2abcos,CD2=c2+d2-2cdcos,前两式之和减去后两式之和得:AD2+BC2-AB2-CD2=2(ad+bc+ab+cd)cos,又凸四边形ABCD中, ACBD=ad+bc+ab+cd,因此AD2+BC2-AB2-CD2=2 ACBD cos,5解:,由知的取值范围是6证明:依题意有x=cos(y+z),y=cos(z+x),z=cos(x+y),则x-y=cos(y+z)-cos(z+x)= 当时,由式有,产生矛盾因此x=y,同理可证y=z,于是x=y=z7解法一:S集即为由直线确定的上半平面的交集(不同,相对应的上半平面一般也不同,但所有的这种上半平面有公共部分即交集;另外,可以规定上半平面也包含这条直线),而半径为的圆的圆心(0,7)到直线的距离为,由题意知,应满足,故的最大值是的最小值,当且仅当时,的最大值为解法二:(二次函数方法)把cos2+xcos+y0改写为2cos2+xcos+y-10,令t=cos问题等价转换为2t2+xt+y-10(-1t1)恒成立,求x,y的关系可按对称轴位置分两种情况讨论:若对称轴t=1(即x4或x-4)时,只须t=cos=1时,恒有2t2+xt+y-10即可,从而可得:;若对称轴t=-1,1,即-4x4时,只须判别式0即x28(y-1), (-4x4)综上可得:S对应的平面点集为或x28(y-1), (-4x4),设圆x2+(y-7)2=r2与抛物线x2=8(y-1)相切,消去x得8(y-1)+(y-7)2-r2=0,即y2-6y+41-r2=0,令=0得r=,此时x=4, y=3,而点(0,7)到直线y+x+1=0的距离为,最大值为8证:作差,=(配方)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年风电叶片回收技术创新应用与产业链绿色化发展研究报告
- 2024-2025年储能技术在氢能领域的应用与发展前景报告
- 2025国家公务员政治理论应知应会知识考试题库及答案
- 《新医学大学英语视听说教程1》课件全套 Unit1-6 Exploring diet-health connections-The symphony of population wellness
- 企业财务管理智能决策系统
- 人工智能安全 课件 第1章 人工智能安全概述
- 即兴创作考试题及答案
- 黄冈插班考试题及答案
- 2025年河南省行政执法证考试题库附答案
- 2025内蒙古事业单位招聘报考指南笔试备考附答案详解(考试直接用)
- 2025年江苏省常州市中考作文解析和范文
- 2024“五史”全文课件
- 2025年中国邮政储蓄银行招聘考试题库
- 中医科药品使用管理制度
- 舌癌手术护理配合
- 《纪录片创作理论与实践》- 教学大纲(48学时)
- 江西美术出版社(赣美版)美术四年级上册全册课件
- 泌尿系结石 课件
- 【正版授权】 IEC 60512-26-100:2008/AMD1:2011 EN-FR Amendment 1 - Connectors for electronic equipment - Tests and measurements - Part 26-100: Measurement setup,test and reference arrangements and
- JBT 11699-2013 高处作业吊篮安装、拆卸、使用技术规程
- 食药环侦知识讲座
评论
0/150
提交评论