




已阅读5页,还剩69页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DataWarehouse WhyDatawarehouse Themostcommonissuecompaniesfacewhenlookingatdataminingisthattheinformationisnotinoneplace Thebiggestchallengebusinessanalystsfaceinusingdataminingishowtoextract integrate cleanse andpreparedatatosolvetheirmostpressingbusinessproblems WhatisDataWarehouse Theideaofadatawarehouseistoputawiderangeofoperationaldatafrominternalandexternalsourcesintooneplacesoitcanbebetterutilizedbyexecutives lineofbusinessmanagersandotherbusinessanalysts Oncetheinformationisgathered OLAP on lineanalyticalprocessing softwarecomesintoplaybyprovidingthedesktopanalysistoolsforquerying manipulatingandreportingthedatafromthedatawarehouse DataWarehouseenvironment thesourcesystemsfromwhichdataisextractedthetoolsusedtoextractdataforloadingthedatawarehousethedatawarehousedatabaseitselfwherethedataisstoredthedesktopqueryandreportingtoolsusedfordecisionsupport DataWarehousingProcessOverview OperationalVs MultidimensionalViewOfSales CreatingADataWarehouse TheDataWarehouse TheDataWarehouseisanintegrated subject oriented time variant non volatiledatabasethatprovidessupportfordecisionmaking TheDataWarehouse IntegratedTheDataWarehouseisacentralized consolidateddatabasethatintegratesdataretrievedfromtheentireorganization Subject OrientedTheDataWarehousedataisarrangedandoptimizedtoprovideanswerstoquestionscomingfromdiversefunctionalareaswithinacompany TheDataWarehouse TimeVariantTheWarehousedatarepresenttheflowofdatathroughtime Itcanevencontainprojecteddata Non VolatileOncedataentertheDataWarehouse theyareneverremoved TheDataWarehouseisalwaysgrowing OperationalDatabasevs Datawarehouse OperationalDBSimilardatacanhavedifferentrepresentationsormeaningsFunctionalorprocessorientationCurrenttransactionFrequentupdating DataWarehouseUnifiedviewofalldataelementsSubjectorientationfordecisionsupportHistoricalinformationwithtimedimensionDataareaddedwithoutchange DataMart Adatamartisasmall single subjectdatawarehousesubsetthatprovidesdecisionsupporttoasmallgroupofpeople DataMart DataMartscanserveasatestvehicleforcompaniesexploringthepotentialbenefitsofDataWarehouses DataMartsaddresslocalordepartmentalproblems whileaDataWarehouseinvolvesacompany wideefforttosupportdecisionmakingatalllevelsintheorganization EnterpriseDataWarehouse EDW AlargescaredatawarehousethatisusedacrosstheenterprisefordecisionsupportEDWareusedtoprovidedataformanytypesofDSS includingCRM SCM BPM BAM PLM andKMS BPM BusinessperformancemanagementBAM BusinessactivitymonitoringPLM productlifecyclemanagementKMS Knowledgemanagementsystems Metadata Metadataisthedataaboutdata Inadatawarehouse metadatadescribethecontentsofadatawarehouseandthemannerofitsuseGoodmetadataisessentialtotheeffectiveoperationofadatawarehouseanditisusedindataacquisition collection datatransformation anddataaccess TheneedsforTechnicalmetadata Theuseofdatawarehousinganddecisionprocessingofteninvolvesawiderangeofdifferentproducts andcreatingandmaintainingthemetadatafortheseproductsistime consuminganderrorprone Automatingthemetadatamanagementprocessandenablingthesharingofthisso calledtechnicalmetadatabetweenproductscanreducebothcostsanderrors TheNeedsforBusinessmetadata Businessusersneedtohaveagoodunderstandingofwhatinformationexistsinadatawarehouse Theyneedtounderstandwhattheinformationmeansfromabusinessviewpoint howitwasderived fromwhatsourcesystemsitcomes whenitwascreated whatpre builtreportsandanalysesexistformanipulatingtheinformation andsoforth metadatainadatawarehouse Kimballliststhefollowingtypesofmetadatainadatawarehouse SourcesystemmetadataDatastagingmetadataDBMSmetadataRalphKimball TheDataWarehouseLifecycleToolkit Wiley 1998 ISBN0 471 25547 5 sourcesystemmetadata sourcespecifications suchasrepositories andsourcelogicalschemassourcedescriptiveinformation suchasownershipdescriptions updatefrequenciesandaccessmethodsprocessinformation suchasjobschedulesandextractioncode datastagingmetadata dataacquisitioninformation suchasdatatransmissionschedulingandresults andfileusagedimensiontablemanagement suchasdefinitionsofdimensions andsurrogatekeyassignmentstransformationandaggregation suchasdataenhancementandmapping DBMSloadscripts andaggregatedefinitionsaudit joblogsanddocumentation suchasdatalineagerecords datatransformlogs StarSchema Thestarschemaisadatamodelingtechniqueusedtomapmultidimensionaldecisionsupportintoarelationaldatabase Starschemasyieldaneasilyimplementedmodelformultidimensionaldataanalysiswhilestillpreservingtherelationalstructureoftheoperationaldatabase StarSchema FourComponents FactsDimensionsAttributesAttributehierarchies Figure13 14AThree DimensionalViewofSales Figure13 17AttributeHierarchiesinMultidimensionalAnalysis Facts NumericmeasurementsthatrepresentspecificbusinessaspectoractivityNormallystoredinfacttablethatiscenterofstarschemaFacttablecontainsfactslinkedthroughtheirdimensionsMetricsarefactscomputedatruntime Dimensions QualifyingcharacteristicsprovideadditionalperspectivestoagivenfactDecisionsupportdataalmostalwaysviewedinrelationtootherdataStudyfactsviadimensionsDimensionsstoredindimensiontables Attributes DimensionsprovidedescriptionsoffactsthroughtheirattributesNomathematicallimittothenumberofdimensionsUsetosearch filter andclassifyfactsSliceanddice focusonslicesofthedatacubformoredetailedanalysis AttributeHierarchies Providetop downdataorganizationTwopurpose AggregationDrill down roll updataanalysisDeterminehowthedataareextractedandrepresentedStoredinaDBMS sdatadictionaryUsedbyOLAPtooltoaccesswarehouseproperly StarSchema Astarschemaconsistsoffacttablesanddimensiontables Facttablescontainthequantitativeorfactualdataaboutabusiness theinformationbeingqueried Thisinformationisoftennumerical additivemeasurementsandcanconsistofmanycolumnsandmillionsorbillionsofrows Dimensiontablesareusuallysmallerandholddescriptivedatathatreflectsthedimensions orattributes ofabusiness Figure13 17StarSchemaForSales StarSchemaRepresentation Factsanddimensionsarenormallyrepresentedbyphysicaltablesinthedatawarehousedatabase Thefacttableisrelatedtoeachdimensiontableinamany to one M 1 relationship Factanddimensiontablesarerelatedbyforeignkeysandaresubjecttotheprimary foreignkeyconstraints Figure13 18OrdersStarSchema StarSchema Performance ImprovingTechniquesNormalizationofdimensionaltablesMultiplefacttablesrepresentingdifferentaggregationlevelsDenormalizationoffacttablesTablepartitioningandreplication Figure13 19NormalizedDimensionTables MultipleFactTables Practice Howtodesignastarschemaforanautoinsurancecompanytodoriskanalysis WhatistheObjective WhataretheFacts WhataretheDimensions WhataretheAttributes WhataretheAttributehierarchy AutoinsuranceDWstarschema DataWarehouseDesign GrainAdefinitionofthehighestlevelofdetailthatissupportedinadatawarehouseDrill downTheprocessofprobingbeyondasummarizedvaluetoinvestigateeachofthedetailtransactionsthatcomprisethesummary DataWarehouseImplementation TheDataWarehouseasanActiveDecisionSupportNetworkACompany WideEffortthatRequiresUserInvolvementandCommitmentatAllLevelsSatisfytheTrilogy Data Analysis andUsersApplyDatabaseDesignProcedures DataWarehouseImplementation ImplementingadatawarehouseisgenerallyamassiveeffortthatmustbeplannedandexecutedaccordingtoestablishedmethodsTherearemanyfacetstotheprojectlifecycle andnosinglepersoncanbeanexpertineacharea DataWarehouseImplementationRoadMap DataIntegrationandtheExtraction Transformation andLoad ETL Process Dataintegrationcomprisesthreemajorprocesses dataaccess theabilitytoaccessandextractdatafromanydatasource datafederation theintegrationofbusinessviewsacrossmultipledatastores andchangecapture theidentification capture anddeliveryofthechangesmadetoenterprisedatasources DataIntegrationandtheExtraction Transformation andLoad ETL Process Extraction transformation andload ETL Extraction readingdatafromadatabaseTransformation convertingtheextracteddatafromitspreviousformintotheformthatcanbeplacedintoadatawarehouseLoad puttingthedataintothedatawarehouse DataIntegrationandtheExtraction Transformation andLoad ETL Process DataCleanse Datacleansingordatascrubbingistheactofdetectingandcorrecting orremoving corruptorinaccuraterecordsfromarecordset table ordatabase Usedmainlyindatabases thetermreferstoidentifyingincomplete incorrect inaccurate irrelevantetc partsofthedataandthenreplacing modifyingordeletingthisdirtydata ETLtools AgoodETLtoolmustbeabletocommunicatewiththemanydifferentrelationaldatabasesandreadthevariousfileformatsusedthroughoutanorganization ETLtoolshavestartedtomigrateintoEnterpriseApplicationIntegration orevenEnterpriseServiceBus systemsthatnowcovermuchmorethanjusttheextraction transformationandloadingofdata ManyETLvendorsnowhavedataprofiling dataqualityandmetadatacapabilities On LineAnalyticalProcessing On LineAnalyticalProcessing OLAP isanadvanceddataanalysisenvironmentthatsupportsdecisionmaking businessmodeling andoperationsresearchactivities FourMainCharacteristicsofOLAPUsemultidimensionaldataanalysistechniques Provideadvanceddatabasesupport Provideeasy to useenduserinterfaces Supportclient serverarchitecture On LineAnalyticalProcessing AdditionalFunctionsofMultidimensionalDataAnalysisTechniquesAdvanceddatapresentationfunctionsAdvanceddataaggregation consolidation andclassificationfunctionsAdvancedcomputationalfunctionsAdvanceddatamodelingfunctions IntegrationOfOLAPWithASpreadsheetProgram Figure13 7OLAPServerArrangement SAP sBusinessInformationWarehouse anEnterprise WideInformationHub Anend to endenterprise wideinformationhubtosupportplanninganddecision making AcentraldatarepositoryofSAP non SAP current andhistoricalbusinesstransactionsandmetadata Timelyinformationtoalllevelsandroles fromanalysttoexecutive YearsofSAPfinancial logistic andhumanresourceinformationsystemsexperienceweddedwithmoderndatawarehousemethodologies ASampleOfCurrentDataWarehousingAndDataMiningVendors Table13 10 SuccessStoriesatPepsi Usingthedatawarehouse we vebeenabletoidentifyimportantitems findnationalsuppliersforthem andleveragethoserelationshipstoreducecosts Thankstothewarehouse Pepsicanmonitorpurchasingcomplianceattheuserlevel anabilitythathasboostedpriceandproductcompliancewellover90percent Thewarehousealsohelpsensure100percentsalestaxcompliance saysBridgman Sincegoingonlinein1995 thewarehousehashelpedgenerateprocurementsavingsinexcessof 100million LevelsofDWSupportforEnterpriseDecisionMaking Theneedforreal timedata AbusinessoftencannotaffordtowaitawholedayforitsoperationaldatatoloadintothedatawarehouseforanalysisProvidesincrementalreal timedatashowingeverystatechangeandalmostanalogouspatternsovertimeMaintainingmetadatainsyncispossibleLesscostlytodevelop maintain andsecureonehugedatawarehousesothatdataarecentralizedforBI BAtoolsAnEAIwithreal timedatacollectioncanreduceoreliminatethenightlybatchprocesses Real Time ActiveDataWarehouse RDW ADW Loadingandandprovidingdataviathedatawarehouseastheybecomeavailable ExpandtraditionaldatawarehousefunctionsintotherealmoftacticaldecisionmakingEmpowerdecisionmakingwheninteractdirectlywithcustomersandsuppliers Real TimeDataWarehousing DataWarehouseAdministration Duetoitshugesizeanditsintrinsicnat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年台式电动冲床行业当前发展趋势与投资机遇洞察报告
- 2025年再制造行业当前竞争格局与未来发展趋势分析报告
- 支气管内膜结核影像课件
- 2025至2030年中国松木板行业竞争格局分析及投资战略咨询报告
- 2025汽车驾驶员考试题库及模拟考试答案(初级、中级、高级)
- 2025年二级造价工程师试题(含答案)
- 2025年安全员C2证考试企业管理及职业健康模拟试题及答案
- 辐射安全培训试题(附答案)
- 科室护理知识练习测试考核试题(含答案)
- 2025年食品安全质量检验工职业技能资格知识考试题库与答案
- 2025年《药品经营和使用质量监督管理办法》培训试题及答案
- 2024年云南省县乡教师选调考试《教育学》真题汇编带解析(原创题)
- 工贸安全员考试题库及答案大全
- 羊肚菌栽培及其管理课件
- 教师身体健康管理指南
- 2025高空作业考试试题及答案(完整版)
- 公路水运工程施工安全风险评估指南 第6部分:航道工程JT∕T 1375
- 出租车车辆GPS定位承包合同范本
- 城市污水处理厂运行承诺及保障措施
- 焊接机器人教学培训课件
- 肝脓肿病人护理
评论
0/150
提交评论