《人工智能与数据挖掘教学课件》l.ppt_第1页
《人工智能与数据挖掘教学课件》l.ppt_第2页
《人工智能与数据挖掘教学课件》l.ppt_第3页
《人工智能与数据挖掘教学课件》l.ppt_第4页
《人工智能与数据挖掘教学课件》l.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020 2 6 AI DM 1 Chapter8NeuralNetworks PartIII AdvanceDataMiningTechniques 2020 2 6 AI DM 2 What WhyANN 8 1FeedforwardNeuralNetwork HowANNworks workingprinciple 8 2 1SupervisedLearning MostpopularANN BackpropagationNetwork 8 5 1TheBackpropagationAlgorithm Anexample Content 2020 2 6 AI DM 3 What WhyANN ArtificialNeuralNetworks ANN ANNisaninformationprocessingtechnologythatemulatesabiologicalneuralnetwork Neuron 神经元 vsNode Transformation Dendrite 树突 vsInputAxon 轴突 vsOutputSynapse 神经键 vsWeightStartsin1970s becomeverypopularin1990s becauseoftheadvancementofcomputertechnology 2020 2 6 AI DM 4 2020 2 6 AI DM 5 2020 2 6 AI DM 6 WhatisANN Basics TypesofANNNetworkstructure e g Figure17 9 17 10 Turban 2000 version5 p663 NumberofhiddenlayersNumberofhiddennodesFeedforwardandfeedbackward timedependentproblems Linksbetweennodes existorabsentoflinks Theultimateobjectivesoftraining obtainasetofweightsthatmakesalltheinstancesinthetrainingdatapredictedascorrectlyaspossible Back propagationisonetypeofANNwhichcanbeusedforclassificationandestimationmulti layer Inputlayer Hiddenlayer s OutputlayerFullyconnectedFeedforwardErrorback propagation 2020 2 6 AI DM 7 What WhyANN 8 1FeedforwardNeuralNetwork HowANNworks workingprinciple 8 2 1SupervisedLearning MostpopularANN BackpropagationNetwork 8 5 1TheBackpropagationAlgorithm Anexample Content 2020 2 6 AI DM 8 2 HowANN workingprinciple I Step1 CollectdataStep2 SeparatedataintotrainingandtestsetsfornetworktrainingandvalidationrespectivelyStep3 Selectnetworkstructure learningalgorithm andparametersSettheinitialweightseitherbyrulesorrandomlyRateoflearning pacetoadjustweights Selectlearningalgorithm Morethanahundredlearningalgorithmsavailableforvarioussituationsandconfigurations 2020 2 6 AI DM 9 2 ANNworkingprinciple II Step4 TrainthenetworkComputeoutputsCompareoutputswithdesiredtargets ThedifferencebetweentheoutputsandthedesiredtargetsiscalleddeltaAdjusttheweightsandrepeattheprocesstominimizethedelta TheobjectiveoftrainingistoMinimizetheDelta Error Thefinalresultoftrainingisasetofweights Step5 TestthenetworkUsetestset comparingtestresultstohistoricalresults tofindouttheaccuracyofthenetworkStep6 Deploydevelopednetworkapplicationifthetestaccuracyisacceptable 2020 2 6 AI DM 10 2 ANNworkingprinciple III Example Example1 ORoperation seetablebelow Twoinputelements X1andX2InputsCaseX1X2DesiredResults10002011 positive 3101 positive 4111 positive 2020 2 6 AI DM 11 2 ANNworkingprinciple IV Example Networkstructure onelayer seenextpage LearningalgorithmWeightedsum summationfunction Y1 XiWiTransformation transfer function Y1lessthanthreshold Y 0 otherwiseY 1Delta Z YWi final Wi initial Alpha Delta XiInitialParameters Rateoflearning alpha 0 2Threshold 0 5 Initialweight 0 1 0 3Notes WeightsareinitiallyrandomThevalueoflearningrate alpha issetlowfirst 2020 2 6 AI DM 12 ProcessingInformationinanArtificialNeuron x1 w1j x2 Yj w2j Neuronj wijxi Weights Output Inputs Summations Transferfunction 2020 2 6 AI DM 13 What WhyANN 8 1FeedforwardNeuralNetwork HowANNworks workingprinciple 8 2 1SupervisedLearning MostpopularANN BackpropagationNetwork 8 5 1TheBackpropagationAlgorithm Anexample Content 2020 2 6 AI DM 14 3 Back propagationNetwork NetworkTopologymulti layer Inputlayer Hiddenlayer s OutputlayerFullyconnectedFeedforwardErrorback propagationInitializeweightswithrandomvalues 2020 2 6 AI DM 15 Back propagationNetwork Outputnodes Inputnodes Hiddennodes Outputvector Inputvector xi wij 2020 2 6 AI DM 16 3 Back propagationNetwork Foreachnode1 Computethenetinputtotheunitusingsummationfunction2 Computetheoutputvalueusingtheactivationfunction i e sigmoidfunction 3 Computetheerror4 Updatetheweights andthebias basedontheerror5 Terminatingconditions all wijinthepreviousepoch 周期 weresosmallastobebelowsomespecifiedthresholdthepercentageofsamplesmisclassifiedinthepreviousepochisbelowsomethresholdapre specifiednumberofepochhasexpired 2020 2 6 AI DM 17 BackpropagationErrorOutputLayer 2020 2 6 AI DM 18 BackpropagationErrorHiddenLayer 2020 2 6 AI DM 19 TheDeltaRule 2020 2 6 AI DM 20 RootMeanSquaredError 2020 2 6 AI DM 21 3 Back propagation cont IncreasenetworkaccuracyandtrainingspeedNetworktopologynumberofnodesininputlayernumberofhiddenlayers usuallyisone nomorethantwo numberofnodesineachhiddenlayernumberofnodesinoutputlayerChangeinitialweights learningparameter terminatingconditionTrainingprocess FeedthetraininginstancesDeterminetheoutputerrorUpdatetheweightsRepeatuntiltheterminatingconditionismet 2020 2 6 AI DM 22 SupervisedLearningwithFeed ForwardNetworks BackpropagationLearning 2020 2 6 AI DM 23 Summary Decisionsthebuildermustmake NetworkTopology numberofhiddenlayers numberofnodesineachlayer andfeedbackLearningalgorithmsParameters initialweight learningrateSizeoftrainingandtestdata Structureandparametersdeterminethelengthoftrainingtimeandtheaccuracyofthenetwork 2020 2 6 AI DM 24 NeuralNetworkInputFormat Normalization categoricaltonumerical Allinputandoutputmustnumericalandbetween 0 1 CategoricalAttributes e g attributewith4possiblevaluesOrdinal Setto0 0 33 0 66 1Nominal Setto 0 0 0 1 1 0 1 1 NumericalAttributes 2020 2 6 AI DM 25 NeuralNetworkOutputFormat CategoricalAttributes Numericaltocategorical Type0 1Type0 45NumericalAttributes 0 1 toordinaryvalue Min X Max min 2020 2 6 AI DM 26 Homework P264 ComputationalQuestions 2r 0 5 Tk 0 65Adjustallweightsforoneepoch 2020 2 6 AI DM 27 CaseStudy Example BankruptcyPredictionwithNeuralNetworksStructure Three layernetwork back propagationTrainingdata Smallsetofwell knownfinancialratiosDataavailableonbankruptcyoutcomesSupervisednetwork 2020 2 6 AI DM 28 ArchitectureoftheBankruptcyPredictionNeuralNetwork X4 X3 X5 X1 X2 Bankrupt0 Notbankrupt1 2020 2 6 AI DM 29 BankruptcyPrediction Networkarchitecture FiveInputNode

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论