




已阅读5页,还剩32页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 1流体属性1 1 1连续介质的概念1 1 2流体的易流性1 1 3流体的压缩性与弹性 气体的流动性1 1 4流体的粘性1 2作用在流体微团上力的分类1 3理想流体内一点的压强及其各向同性1 4流体静平衡微分方程1 5重力场静止液体中的压强分布规律1 6液体的相对平衡问题1 7标准大气 第1章流体属性和流体静力学 从微观的角度而言不论液体还是气体其分子与分子之间都是存在间隙的 例如海平面条件下 空气分子的平均自由程为l 10 8mm 但是这个距离与我们宏观上关心的物体 如飞行器 的任何一个尺寸L相比较都是微乎其微的 l L 1 流体力学和空气动力学是从宏观上研究流体 空气 的运动规律和作用力 流体内部和流体对物体 的规律的学科 流体力学和空气动力学常用 介质 一词表示它所处理的流体 流体包含液体和气体 1 1流体属性1 1 1连续介质的概念 当受到物体扰动时 流体或空气所表现出的是大量分子运动体现出的宏观特性变化如压强 密度等 而不是个别分子的行为 一旦满足连续介质假设 就可以把流体的一切物理性质如密度 压强 温度及宏观运动速度等表为空间和时间的连续可微函数 便于用数学分析工具来解决问题 一般用努生数即分子平均自由程与物体特征尺寸之比来判断流体是否满足连续介质假设Nu l L 1对于常规尺寸的物体只有到了外层大气中 l L才可能等于甚至大于1 这时气体分子就会像雨点般稀疏的流向物体 如果我们将流体的最小体积单位假设为具有如下特征的流体微团 宏观上充分小 微观上足够大 则可以将流体看成是由连绵一片的 彼此之间没有空隙的流体微团组成的连续介质 这就是连续介质假设 1 1 1连续介质的概念 当微团体积趋于宏观上充分小的某体积时 密度达到稳定值 但当体积继续缩小达到分子平均自由程量级时 其密度就不可能保持为常数 因此流体力学和空气动力学中所说的微团 在数学上可以看成一个点 但在物理上具有宏观上充分小 微观上足够大的特征 1 1 1连续介质的概念 在连续介质的前提下 流体介质的密度可以表达为流体为均值时流体为非均值时其中为流体空间的体积 为其中所包含的流体质量 流体与固体在力学上最本质的区别在于二者承受剪应力和产生剪切变形能力上的不同 如下图所示 固体能够靠产生一定的剪切角变形量 来抵抗剪切应力 G其中剪切应力 F A A为固体与平板相连接的面积 G为剪切弹性模量 上式即固体的剪切虎克定律 然而如果对流体 例如甘油 也作类似实验将发现 流体的角变形量不仅将与剪切应力 大小有关 而且与剪切应力 的持续时间长短有关 因此 不论所加剪切应力 多么小 只要不等于零 流体都将在剪应力作用下持续不断的产生变形运动 流动 这种特性称为流体的易流性 1 1 2流体的易流性 流体在受压时其体积发生改变的性质称为流体的压缩性 而流体抵抗压缩变形的能力和特性称为弹性 类似于材料力学 用弹性模量 这里是体积弹性模量 度量流体的弹性 体积弹性模量定义为产生单位相对体积变化所需的压强增高 其中E为体积弹性模量 v为流体体积 负号是因为当受压时dp 0体积减小dv 0 考虑到一定质量的流体m v 常数 其密度与体积成反比 体积弹性模量可写为 N m2 当E较大 则流体不容易被压缩 反之当E较小则流体容易被压缩 液体的E一般较大 通常可视为不可压缩流体 气体的E通常较小 且与热力过程有关 故气体具有压缩性 对具体流动问题是否应考虑空气压缩性要看流动产生的压强变化是否引起密度显著变化 一般情况下 当空气流动速度较低时 压强变化引起的密度变化很小 可不考虑空气压缩性对流动特性的影响 1 1 3流体的压缩性与弹性 空气的流动性 气体是流体的一种 它具有流动性 气体受到扰动后 扰动的影响将会以波动的形式传播开去 扰动传播的速度即为声速 因此扰动的传播与气体的弹性有关 后面讲到高速流动时会证明 这里的 等于声速的平方 所以气体的弹性决定于它的密度和声速 而当飞行速度超过音速之后 扰动传播的速度仍是声速 相对于飞行速度而言 它就慢了 飞机没有飞到跟前 空气微团是没有预感的 只是飞到跟前时才突然地被推开 这时流动性就很差了 对于飞行器而言 单说空气的流动性就不够了 而必须在飞行器的飞行速度和扰动的传播速度的比值之下来谈流动性 当飞行速度远小于音速时 低速飞行 扰动在空气里传播速度相对于飞行速度而言是很快的 这时流动性很好 飞行速度再大上去 到了高超音速范围 空气简直像没有流动性一样 而像固体的粒子那样向飞行器打来 1 1 3流体的压缩性与弹性 空气的流动性 飞行器的飞行速度v和扰动的传播速度a的比值称为马赫数Ma 由于气体的弹性决定于声速 因此马赫数的大小可以看成是气体相对压缩性的一个指标 当飞行速度远小于音速时 低速飞行 即马赫数较小时 可以认为此时流动的弹性影响相对较大 即压缩性影响相对较小 从而低速气体有可能被当作不可压缩流动来处理 而当马赫数较大之后 可以认为此时流动的弹性影响相对较小 即压缩性影响相对较大 从而气体就不能被当作不可压缩流动来处理 而必须考虑流动的压缩性效应 可以证明 近似划分气体压缩性影响的马赫数界线为Ma 0 3 即当马赫数小于0 3时 气体的压缩性影响可以忽略不计 或者换言之 此时流动速度的变化不会引起气体密度的显著变化 1 1 3流体的压缩性与弹性 空气的流动性 实际流体都有粘性 不过有大有小 空气和水的粘性都不算大 日常生活中人们不会理会它 但观察河流岸边的漂浮物可以看到粘性的存在 下述直匀流流过平板表面的实验突出表明了粘性的影响 由于粘性影响 原来是均匀的气流流至平板后直接贴着板面的一层速度降为零 称为流体与板面间无滑移 稍外一层的气流受到层间摩擦作用速度也也下降至接近于零 但由于不紧挨板面多少有些速度 层间的互相牵扯作用一层层向外传递 离板面一定距离后 牵扯作用逐步消失 速度分布变为均匀 1 1 4流体的粘性 取其中相邻的二层流体来看 慢层对快层有向后的牵扯而使其有变慢的趋势 而快层对慢层有向前的牵扯使其有变快的趋势 流体相邻层间存在着抵抗层间相互错动的趋势这一特性称为流体的粘性 层间的这一抵抗力即摩擦力或剪切力 单位面积上的剪切力称为剪切应力 牛顿提出 流体内部的剪切力 与流体的角变形率成正比 注意对于固体而言 与 成正比 考虑如上图的流体元变形 可以证明单位时间内的角变形等于速度梯度 这是因为 u du dt udt dudt 又 d dy 其中比例系数 是反映粘性大小的物性参数 称为动力粘性系数 1 1 4流体的粘性 从而得到著名的牛顿粘性公式 其中 的单位是帕 N m2 动力粘性系数 的单位是 帕秒 Ns m2 从牛顿粘性公式可以看出 1 流体的剪应力与压强p无关 注意到固体摩擦力与正压力有关 2 当 0时 即无论剪应力多小 只要存在剪应力 流体就会发生变形运动 因此牛顿粘性公式可看成是易流性的数学表达 3 当时 0 即只要流体静止或无变形 就不存在剪应力 换言之 流体不存在静摩擦力 4 由于流体与固体表面无滑移 故壁面处为有限值 所以壁面处剪应力 0也为有限值 1 1 4流体的粘性 液体和气体产生粘性的物理原因不同 液体分子结构紧密 液体的粘性主要来自于液体分子间的内聚力 气体分子结构松散 气体粘性主要来自于气体分子的热运动 因此液体和气体的动力粘性系数随温度的变化趋势刚好相反 但粘性系数与压强基本无关 液体和气体的动力粘性系数随温度变化的关系可查阅相应表格或近似公式 如气体动力粘性系数的萨特兰公式 等等 在许多空气动力学问题里 粘性力和惯性力同时存在 在式子中 和 往往以 的组合形式出现 用符号 表示 因为 量纲只包含长度和时间 为运动学量 称为运动粘性系数 液体与气体动力粘性系数随温度变化的趋势为 液体 温度升高 动力粘性系数变小 反之变大气体 温度升高 动力粘性系数变大 反之变小 空气粘性不大 初步近似可忽略其粘性作用 忽略粘性的流体称为理想流体 1 1 4流体的粘性 按照作用力的性质和作用方式 可分为彻体力和表面力两类 彻体力 外力场作用于流体微团质量中心 大小与微团质量成正比的非接触力 例如重力 惯性力和磁流体具有的电磁力等都属于彻体力 也有称为体积力或质量力的 由于彻体力按质量分布 故一般用单位质量的彻体力表示 并且往往写为分量形式 其中是微团体积 为密度 为作用于微团的彻体力 i j k分别是三个坐标方向的单位向量 fx fy fz分别是三个方向的单位质量彻体力分量 1 2作用在流体微团上的力的分类 表面力 相邻流体或物体作用于所研究流体团块外表面 大小与流体团块表面积成正比的接触力 由于表面力按面积分布 故用单位面积上的接触力即接触应力表示 由于接触应力一般与表面法线方向并不重合 故又可以将接触应力分解为法向应力和切向应力 法向应力即静压强 切向应力即摩擦应力或剪切应力 上述画出的表面力对整个流体而言是内力 对所画出的流体团块来说则是外力 1 2作用在流体微团上的力的分类 流体内任取一个剖面一般有法向应力和切向应力 但切向应力完全是由粘性产生的 而流体的粘性力只有在流动时才存在 静止流体是不能承受切向应力的 流体中的法向应力称为压强p 注 其指向沿着表面的内法线方向 压强的量纲是 力 长度 2 单位为 N m2 或 帕 Pa 在理想 无粘 流体中 不论流体静止还是运动 尽管一般压强是位置的函数p p x y z 但在同一点处压强不因受压面方位不同而变化 这个结果称为理想流体内压强是各向同性的 注 关于有粘的运动流体 严格说来压强指的是三个互相垂直方向的法向力的平均值 加负号 1 3理想流体内一点的压强及其各向同性 如讨论P点处压强 在周围取如图微元4面体ABCO 作用在各表面的压强如图所示 理想流体无剪切应力 由于dx dy dz的取法任意 故面ABC的法线方向n方向也是任意的 分别沿x y z三个方向建立力的平衡关系 x方向合外力 质量 加速度 x方向 方程左端等于 方程右端等于 三阶小量 0 由此可得 因为图中的n方向为任取 故各向同性得证 同理可得 即 1 3理想流体内一点的压强及其各向同性 下面我们来研究压强在静止流体中的分布规律 在平衡流体 静止或相对静止 中取定一笛卡儿坐标系oxyz 坐标轴方位任意 在流体内取定一点P x y z 然后以该点为中心点沿坐标轴三个方向取三个长度dx dy dz 划出一微元六面体作为分析对象 假设 六面体体积 d dxdydz中心点坐标 x y z中心点压强 p p x y z 中心点密度 x y z 中心点处沿三个方向的单位质量彻体力fx fy fz 微元六面体的表面力可以用中心点处压强的一阶泰勒展开表示 如图为x方向彻体力 其他方向同理可得 由于流体静止故无剪应力 1 4流体静平衡微分方程 x方向的表面力为 x方向的彻体力为 流体静止 则x方向的合外力为零 两边同除以d dxdydz并令d 趋于零 可得x方向平衡方程 同理可得y z方向的平衡方程 流体平衡微分方程 1 4流体静平衡微分方程 这三个式子表明当流体平衡时 若压强在某个方向有梯度的话 必然是由于彻体力在该方向有分量的缘故 将上三个式子分别乘以dx dy dz 然后相加起来 得到 此式左端是个全微分 如果右端的三个彻体力分量fx fy fz 符合下列关系的话 则第一式右端括号也是某个函数的全微分 记该函数为 x y z 称 为彻体力的势函数 或称彻体力为有势力 只有在有势力作用下流体才可能平衡 重力 惯性力和电磁力都为有势力 1 4流体静平衡微分方程 当彻体力为有势力时 则平衡微分方程可写为 设彻体力与势函数的关系为 等压面的概念 流场中压强相等的空间点组成的几何曲面或平面 在等压面上满足 上式积分后为一几何曲面或平面 该曲面上满足dp 0 上方程称为等压面方程 如果我们知道某一点的压强值pa和彻体力势函数 a的值 则任何其它点的压强和势函数之间的关系便可表为 或 1 4流体静平衡微分方程 等压面方程还可写为 其中 为彻体力向量 为等压面上的向径 上式表明 等压面处处与彻体力相正交 例如 1 在重力场下静止液体等压面必然为水平面 2 在加速上升电梯中的液体除了受到重力之外 还受到向下的惯性力 二者合成的彻体力均为向下 因此等压面也是水平面 1 4流体静平衡微分方程 1 5重力场静止液体中的压强分布规律 设封闭容器自由面处压强为p0 如图建立坐标系 考虑距水平轴高度为y处的某单位质量流体 其彻体力可表示为 对于不同高度上的1 2两点 平衡基本方程可以写为 平衡流体中不同高度处 压力水头与高度水头可以互相转换 但总水头保持不变 的几何意义为 y 代表所研究流体质点在坐标系中所处高度 称为高度水头p 代表所研究流体质点在真空管中上升高度 称为压力水头H 由于方程量纲为高度 该积分常数代表上述二高度之和称为总水头 如图所示 1 5重力场中静止液体中的压强分布规律 的物理意义为 y 代表单位重量流体的重力势能简称势能p 代表单位重量流体的压力势能简称压力能H 代表平衡流体中单位重量流体的总能量 假设自由液面距水平轴距离为H 则自由面与y处流体满足 其中h H y是所论液体距自由面的深度 1 5重力场中静止液体中的压强分布规律 式表明 平衡流体中距自由面深h处的压强来自于两部分的贡献 一是上方单位面积上的液重 h 因此压强随距自由面的淹没深度而线性增加二是自由面上的压强贡献P0 而该贡献处处相同与深度无关 当自由面为大气压pa时 距自由面深h处的压强可表为 压强的计量 以真空为压强参考值计量的压强称为绝对压强 如上式中的p以大气压pa为参考压强 高出大气压部分的压强称为相对压强pb p pa以大气压pa为参考压强 不足大气压部分的压强称为真空度pv pa p对于同一个压强值p 其相对压强pb与其真空度pv之间的关系为pb pv 1 5重力场中静止液体中的压强分布规律 湿式大气压力计 例 湿式大气压力表的工作原理 有一种大气压力表是用汞柱的高度来表达大气压的数值的 一根上端封闭的长玻璃管和一个盛汞的底盒 玻管竖立 玻管中有汞与底盒中的汞连通 玻管中汞柱的上端是真空的 参看右图 把坐标平面xy放在管中汞柱的上表面 该处的 按式 玻管下面与盒中汞面等高的A处 距上表面的深度为h 的压强pA是 而pA和大气压pa是相等的 即 这样 要计算大气压的值的话 只要把气压表上读下来的汞柱高度米乘以汞的重度就是了 大气压的读数往往只说汞柱高就行了 一个标准气压是760毫米汞柱 1 5重力场中静止液体中的压强分布规律 1 6液体的相对平衡问题 在以匀加速运动或匀角速度转动的相对平衡流体中 如果将坐标系固连在以匀加速运动或匀角速度转动的容器上 对液体引入惯性力 达朗伯原理 则同样可以利用平衡微分方程求解问题 如图圆筒作匀角速转动 求其中液体的等压面形状和压强分布规律 将坐标系固连于转筒 并建如图坐标系 考虑距底壁为z 半径为r处单位质量流体 会受到一个向下的彻体力大小为g 此外还受到一个向外的惯性力大小为 2r 在直角坐标系中 三个方向的彻体力可表为 求等压面 由等压面方程 可得 积分得 特别地 设自由面最低点距坐标原点高H时 如图 可定出自由面对应的常数 r 0时 c z H 故自由面方程为 其中称为超高 即液面高出抛物线顶点的部分 1 6液体的相对平衡问题 求压强分布 由平衡微分方程方程 可得 积分得 由自由面条件 可定出积分常数 x y 0 z H时 p pa 定得积分常数c pa gH 带入上述积分结果 得 如果令方括号等于H 则上式可以写为 其中H 即为从自由面向下的淹没深度 等于超高加上距顶点的深度 上述压强分布表明 在旋转平衡液体中 压强随深度线性增加 随半径呈平方增加 1 6液体的相对平衡问题 即在上图中 A点处压强大于自由面顶点处压强 而B点处压强又大于A点处压强 C点处压强又大于B点处压强 此外压强分布还与旋转角速度的平方 2成正比 这是因为离心力是以旋转角速度的平方 2成正比的 如旋转角速度很大 这个彻体力可以很大 从而一定半径处的压强会很大 由于随半径不同各处的惯性离心力不同 因此合成的惯性力方向随半径而变化 在外侧惯性力较大故合彻体力方向趋于水平 在圆心附近惯性力较小故合彻体力方向趋于垂直 这是旋转平衡液体的等压面成为抛物面形状的原因 旋转液体的特点在在工程中也有很重要的应用 例如旋转铸造或离心铸造等 对于铸造薄壁容器 列车车轮等有重要意义 右图为旋转液体压强分布演示 1 6液体的相对平衡问题 1 7标准大气 气象条件逐日都有些变化 更不用说不同的季节了 并且不同地区气象也不相同 无论做飞行器设计 还是做实验研究 都要用到大气的条件 为了便于比较 工程上需要规定一个标准大气 这个标准是按中纬地区的平均气象条件定出来的 这样做计算时 都依此标准进行计算 做实验时 也都换算成标准条件下的数据 标准大气规定在海平面上 大气温度为15 或T0 288 15K 压强p0 760毫米汞柱 101325牛 米2 密度 0 1 225千克 米3 从基准面到11km的高空称为对流层 在对流层内大气密度和温度随高度有明显变化 温度随高度增加而下降 高度每增加1km 温度下降6 5K 即 从11km到21km的高空大气温度基本不变 称为同温层 在同温层内温度保持为216 5K 普通飞机主要在对流层和平流层里活动 我们可以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿小动物教学课件
- 商务合同评审及归档标准化模板
- 广东省江门市恩平市恩平市2025年七年级上学期语文开学试卷附答案
- 睡眠者效应课件
- 2025年特岗教师招聘笔试初中政治教育法律法规模拟试题及解析
- 2025年特岗教师招聘面试初中英语听力测试策略及训练
- 2025年软件开发工程师技能进阶指南与模拟题答案
- 2025年物资储备仓库设备维护与操作知识测试题库及答案详解
- 2025年财务会计高级面试题详解与经验
- 2025年烘焙设备操作与维护在中级考试中的要点
- DB21-T 2523-2015矿山地质环境恢复治理规程
- 新能源集控中心建设方案
- 实验室中央空调施工方案
- 《中国老年糖尿病诊疗指南(2024版)》解读课件
- 幼儿园 中班语言绘本《章鱼先生卖雨伞》
- 《中国女性乳腺癌患者糖尿病和糖尿病前期管理专家共识》 (2024版)
- 6大国工匠百炼成器教案-蓝色
- 蜂种买卖合同
- AQ/T 7014-2018 新型干法水泥生产安全规程(正式版)
- 《智能产线设计与仿真》课程标准
- 全案设计高级感合同
评论
0/150
提交评论