




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.5笛卡尔几何学的基本概念(basic concepts of Cartesian geometry)课文5-A the coordinate system of Cartesian geometryAs mentioned earlier, one of the applications of the integral is the calculation of area. Ordinarily , we do not talk about area by itself ,instead, we talk about the area of something . This means that we have certain objects (polygonal regions, circular regions, parabolic segments etc.) whose areas we wish to measure. If we hope to arrive at a treatment of area that will enable us to deal with many different kinds of objects, we must first find an effective way to describe these objects.The most primitive way of doing this is by drawing figures, as was done by the ancient Greeks. A much better way was suggested by Rene Descartes, who introduced the subject of analytic geometry (also known as Cartesian geometry). Descartes idea was to represent geometric points by numbers. The procedure for points in a plane is this :Two perpendicular reference lines (called coordinate axes) are chosen, one horizontal (called the “x-axis”), the other vertical (the “y-axis”). Their point of intersection denoted by O, is called the origin. On the x-axis a convenient point is chosen to the right of O and its distance from O is called the unit distance. Vertical distances along the Y-axis are usually measured with the same unit distance ,although sometimes it is convenient to use a different scale on the y-axis. Now each point in the plane (sometimes called the xy-plane) is assigned a pair of numbers, called its coordinates. These numbers tell us how to locate the points. Figure 2-5-1 illustrates some examples.The point with coordinates (3,2) lies three units to the right of the y-axis and two units above the x-axis.The number 3 is called the x-coordinate of the point,2 its y-coordinate. Points to the left of the y-axis have a negative x-coordinate; those below the x-axis have a negtive y-coordinate. The x-coordinateof a point is sometimes called its abscissa and the y-coordinateis called its ordinate.When we write a pair of numberssuch as (a,b) to represent a point, we agree that the abscissa or x-coordinate,a is written first. For this reason, the pair(a,b) is often referred to as an ordered pair. It is clear that two ordered pairs (a,b) and (c,d) represent the same point if and only if we have a=c and b=d. Points (a,b) with both a and b positiveare said to lie in the first quadrant ,those with a0 are in the second quadrant ; and those with a0 and b0 and b0 are in the fourth quadrant. Figure 2-5-1 shows one point in each quadrant.The procedure for points in space is similar. We take three mutually perpendicular lines in space intersecting at a point (the origin) . These lines determine three mutually perpendicular planes ,and each point in space can be completely described by specifying , with appropriate regard for signs ,its distances from these planes. We shall discuee three-dimensional Cartesian geometry in more detail later on ; for the present we confine our attention to plane analytic geometry.课文5-A:笛卡尔几何坐标系正如前面所提到的,积分应用的一种是计算面积。通常我们不单独讨论面积,我们还讨论其它物体的面积。这意味着我们有特定的物体(多边形,圆域,抛物弓形等)希望能测量。如果我们希望获得面积的计算方法以便能用它来处理多种不同类型的图形,我们就必须首先找出描述这些图形的有效方法。做这件事的最原始的方法就是描绘出图形,就如古希腊人所作的那样。笛卡尔(1596-1650)提出了一种好得多的方法并建立了解析几何(也称为笛卡尔几何)这个学科。笛卡尔的思想就是用数字来代表几何中的点,对应点的过程如下:选取两条相互垂直的线(称为坐标轴),一条水平的(称为x轴),另一条是垂直(称为y轴),它们的交点记为O,称为原点。在x轴上O右边选定一个适当的点,并把它到O的距离称为单位长度。沿着y轴的竖直距离通常也用相同的单位长度来测量,不过有时采用不同的尺度较为方便。现在平面(有时叫xy平面)上的每个点都对应一个数对,称它为坐标。这些数对告诉我们如何定为一个点。图2-5-1说明了一些例子。坐标(3,2)的点位于y轴右边三个单位且在x轴上方两个单位长度的地方。3称为该点的x坐标,2称为该点的y坐标。y轴左边的点有负的x坐标,那些x轴下方的点有负的y坐标。点的x坐标有时称为横坐标,y坐标称为纵坐标。当我们用一对数如(a,b)代表一个点时,我们商定横坐标,x坐标也就是a写在第一位。由于这个原因,数对(a,b)是一个有序数对。很明显,当且仅当a=c,b=d时,两个有序数对(a,b)和(c,d)代表同一个点。点(a,b)当a,b同为正时,该点位于第一象限,当a0时位于第二象限,当a0,b0,b0时位于第四象限。图2-5-1画出了每个象限的一个点。在空间中点的表示方法是相似的。我们取空间中交于一点(原点)的三条相互垂直的线。这些线决定了三个相互垂直的平面,且空间中的每一个点通过它到三个平面的距离选取合适的记号,都能完全具体的指定出来。我们之后应该更细节的讨论三维笛卡尔几何,目前我们限制于关注平面解析几何。 课文5-B Geometric figuresA geometric figure, such as a curve in the plane , is a collection of points satisfying one or more special conditions. By translating these conditions into expressions, involving the coordinates x and y, we obtain one or more equations which characterize the figure in question , for example, consider a circle of radius r with its center at the origin, as show in figure 2-5-2. let P be an arbitrary point on this circle, and suppose P has coordinates (x, y). Then the line segment OP is the hypotenuse of a right triangle whose legs have lengths |x| and |y| and hence, by the theorem of Pythagoras, . This equation, called a Cartesian equation of the circle , is satisfied by all points (x,y) on the circle and by no others , so the equation completely characterizes the circle. This example illustrates how analytic geometry is used to reduce geometrical statements about points to analytical statements about real numbers.Throughout their historical development, calculus and analytic geometry have been intimately intertwined. New discoveries in one subject led to improvements in the other. The development of calculus and analytic geometry in this book is similarto the historical development, in that the two subjects are treated together . However our primary purpose is to discuss calculus . Concepts from analytic geometry that are required for this purpose will be discussed as needed . Actually, only a few very elementary concepts of plane analytic geometry are required to understand the rudiments of calculus . A deeper study of analytic geometry is needed to extend the scope and applications of calculus , and this study will be carried out in later chapters using vector methods as well as the methods of calculus. Until then, all that is required from analytic geometry is a little familiarity with drawing graph of function.课文5-B:几何图形 一个几何图形,比如平面上的一条曲线,是满足一个或多个特殊条件点的集合。通过把这些条件转化成含有坐标x和y的表达式,我们就得到了一个或多个能刻画该图形特征的方程。例如,考虑一个中心在原点半径为r的圆,如图2-5-2.让P是这个圆上的任意一点,并且假设P的坐标为(x,y)。然后线段OP是一个边长为|x|和|y|的直角三角形的斜边,因此由毕达哥拉斯定理,x2+y2=r2.这个等式叫做圆的笛卡尔等式,仅圆上所有点(x,y)满足它,所以这个等式完全描绘了圆。这个例子说明解析几何如何被用来把点的几何特征归纳为真实数据的解析特征。微积分与解析几何在它们的发展史上已经互相融合在一起了。一个领域的新的发现导致另一个领域的提高。在这本书微积分和解析几何的发展与历史发展是相似的,因此这两个学科被放在一起看待的。然而,我们初始的目的是讨论微积分。为了这个目的,来自解析几何的概念需要被讨论。实际上,仅仅一些很基本的平面解析几何的概念是需要熟知微积分的原理的。拓展微积分的范围和应用需要更深入的研究解析几何,这种学习将在之后的几章用和微积分方法一样的向量方法完成。直到那时,从解析几何的全部需要就是对绘图功能有些了解。课文5-C Set of points in the planeWe have already showen that there is a one-to-one correspondence between points in a plane and paies of numbers (x,y) . Certain sets of points in the plane may be of special interest. For example , we may wish to examine the set of point comprising the circumference of a certain circle , or the set of points constituting the interior of a certain triangle. One may wonder if such sets of points may be succinctly described in acompact mathematical noyation.We may write to describe the set of ordered pairs (x,y) , or corresponding points , such that the ordinate is equal to twice the abscissas. In effect ,then, the vertical line in (1) is read “such that” . By “the graph of the set of ordered pairs” is meant the set of all points of the plane corresponding to the set of ordered pairs. The student will readily infer that the set of points constituting the graph lies on a straight line.Cons
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 提升疾控人才的科研能力与创新意识
- 工业遗产场所的创意产业转型与空间改造
- 初中语文阅读教学与信息技术的融合探索
- 临床实践对护理学助产方向本科生职业素养发展的影响
- 社交空间与私密空间的平衡对心理疗愈的支持
- 财务人员转型中的组织协作与跨部门沟通模式
- 社区参与对建筑立面设计改造效果的提升
- 钢铁产业绿色低碳技术创新实施
- 乐园安全培训知识课件
- 绿化维保申请报告(3篇)
- 个人述职报告范文汇总参考模板
- 超星尔雅学习通《经济与社会如何用决策思维洞察生活》章节测试答案
- 如何防范企业网络入侵与黑客攻击
- 剑桥Think第一级Unit+1+Welcome课件
- 华为财务管理(6版)-华为经营管理丛书
- 横河CS3000工程师培训资料
- LY/T 3355-2023油茶
- DB15-T 2241-2021 数据中心绿色分级评估规范
- 消防初级考试题库
- 吐鲁番地区鄯善县区域环境概况自然及社会环境概况
- 张掖固化抛光地坪施工方案
评论
0/150
提交评论