《图像分割方案》PPT课件.ppt_第1页
《图像分割方案》PPT课件.ppt_第2页
《图像分割方案》PPT课件.ppt_第3页
《图像分割方案》PPT课件.ppt_第4页
《图像分割方案》PPT课件.ppt_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

图像分割 课程内容 计算机图像处理的两个目的 产生更适合人观察和识别的图像有计算机自动识别和理解图像内容安排图像分割定义和方法分类边缘检测阈值分割Hough变换基于过渡区的阈值区域生长 图像分割 图像分割的目标是重点根据图像中的物体将图像的像素分类 并提取感兴趣目标图像分割是图像识别和图像理解的基本前提步骤 图像 图像分割举例 图像分割举例 图像分割是把图像分解成构成的部件和对象的过程把焦点放在增强感兴趣对象汽车牌照排除不相干图像成分 非矩形区域 形式化的定义 形式化定义令集合R代表整个图像区域 对R的分割可看作将R分成若干个满足以下条件的非空子集 子区域 R1 R2 R3 Rn 分类 分割依据相似性分割 将相似灰度级的像素聚集在一起 形成图像中的不同区域 这种基于相似性原理的方法也称为基于区域相关的分割技术非连续性分割 首先检测局部不连续性 然后将它们连接起来形成边界 这些边界把图像分以不同的区域 这种基于不连续性原理检出物体边缘的方法称为基于点相关的分割技术两种方法是互补的 有时将它们地结合起来 以求得到更好的分割效果 人眼图像示例 分类 连续性与处理策略连续性 不连续性 边界相似性 区域处理策略 早期处理结果是否影响后面的处理并行 不串行 结果被其后的处理利用四种方法并行边界 串行边界 并行区域 串行区域 问题不同种类的图像 不同的应用要求所要求提取的区域是不相同的 分割方法也不同 目前没有普遍适用的最优方法 人的视觉系统对图像分割是相当有效的 但十分复杂 且分割方法原理和模型都未搞清楚 这是一个很值得研究的问题 研究层次图像分割算法图像分割算法的评价和比较对分割算法的评价方法和评价准则的系统研究 图像分割的策略 图像分割的基本策略是基于灰度值的两个基本特性 区域之间的不连续性先找到点 线 宽度为1 边 不定宽度 再确定区域区域内部的相似性通过选择阈值 找到灰度值相似的区域区域的外轮廓就是对象的边 点检测 用空域的高通滤波器来检测孤立点 R 1 8 8 128 8 9 106可以设置阈值T 64若R 0 则说明 若R T 则说明 点检测 汽轮机叶片对应的X光图像 点检测的结果 改变阈值的结果 线检测 通过比较典型模板的计算值 确定一个点是否在某个方向的线上你也可以设计其它模板 模板系数之和为0感兴趣的方向系数值较大 线检测 用4种模板分别计算R水平 6 30 24R45度 14 14 0R垂直 14 14 0R135度 14 14 0从这些值中寻找绝对值最大值 确定当前点更加接近于该模板所对应的直线 边缘检测 物体的边缘是以图像局部特性的不连续性的形式出现的 从本质上说 边缘意味着一个区域的终结和另一个区域的开始 图像边缘信息在图像分析和人的视觉中都是十分重要的 是图像识别中提取图像特征的一个重要属性 是一种并行边界技术 阶跃型凸缘型房顶型 边缘导数 边缘检测 边缘上的这种变化可以通过微分算子进行检测 一阶导数 通过梯度来计算二阶导数 通过拉普拉斯算子来计算 边缘检测 一阶导数 用梯度算子来计算特点 对于亮的边 边的变化起点是正的 结束是负的 对于暗边 结论相反 常数部分为零 用途 用于检测图像中边的存在 边缘检测 二阶导数 通过拉普拉斯来计算特点 二阶微分在亮的一边是正的 在暗的一边是负的 常数部分为零 用途 确定边上的像素是在亮的一边 还是暗的一边 0用于确定边的准确位置 最早的边缘检测方法都是基于像素的数值导数的 在数字图像中应用差分代替导数运算 由于边缘是图像上灰度变化比较剧烈的地方 在灰度变化突变处进行微分 将产生高值 因此在数学上可用灰度的导数来表示变化 差分定义 简单边缘检测方法 图像经过梯度运算能灵敏地检测出边界 但是梯度运算比较复杂 梯度算子梯度是图像处理中最为常用的一次微分方法 图像函数在点的梯度幅值为其方向为 对于数字图像 可用一阶差分替代一阶微分 则f x y 的梯度幅度可以 常用的边缘检测器 给定图像中的一个3 3区域 使用下面的边缘检测滤波器进行检测 它们都使用一阶导数 边缘检测举例 边缘检测问题 边缘检测中经常碰到的问题是 图像中存在太多的细节 比如 前面例子中的砖墙图像受到噪声的干扰 不能准确的检测边缘解决的一个方法是在边缘检测之前对图像进行平滑 常用的平滑滤波器为高斯 Gauss 函数 对于图像信号 Marr提出先用高斯函数进行平滑 对图像进行线性平滑 在数学上是进行卷积 由于边缘点是图像中灰度值变化剧烈的地方 这种图像强度的突变将在一阶导数中产生一个峰 或等价于二阶导数中产生一个零交叉点 Marr提出用拉普拉斯算子来替代 即用下式的零交叉点作为边缘点 滤波器具有两个显著的特点 1 该滤波器中的高斯函数部分能把图像平滑 2 该滤波器采用拉普拉斯算子可以减少计算量 在具体实现与之间的卷积运算时 a 取一个N N的窗口 通常 时 检测效果较好 b 窗口模板内各系数之和为0 滤波器具有两个显著的特点 1 该滤波器中的高斯函数部分能把图像平滑 2 该滤波器采用拉普拉斯算子可以减少计算量 在具体实现与之间的卷积运算时 a 取一个N N的窗口 通常 时 检测效果较好 b 窗口模板内各系数之和为0 平滑后的边缘检测举例 Laplacian边缘检测 我们曾经碰到过基于2阶导数的Laplacian滤波器Laplacian由于对噪声太敏感 因此一般不单独使用通常和平滑Gaussian滤波器进行结合来进行边缘检测 高斯拉普拉斯 LOG 高斯拉普拉斯 LaplacianofGaussian LOG 或Mexicanhat 墨西哥草帽 滤波器使用了Gaussian来进行噪声去除并使用Laplacian来进行边缘检测 高斯拉普拉斯举例 阈值 Thresholding 图像分割的经典方法是基于灰度阈值的分割方法我们已经讨论了简单的单值阈值 它把一幅灰度图像转换成二值图像简单的单值阈值在数学上可以描述为 常用的方法是求解灰度直方图中的双峰或者多峰 并以两峰之间的谷底作为阈值 阈值举例 设想电脑玩家手中的扑克牌 我们需要对其进行视觉上的分析 但是小心 如果你设置了错误的阈值 结果是很糟糕的 全局阈值 GlobalThresholding 全局阈值是指整幅图像使用同一个阈值做分割处理 并产生一个二值图 区分出前景对象和背景 适用于背景和前景对比度大的图像算法实现 选取一个合适的阈值T 逐行扫描图像凡灰度级大于T的 颜色置为255 凡灰度级小于T的 颜色置为0 基本的全局阈值算法 基本的全局阈值T可以按如下计算 1 选择一个初时估计值T 一般为图像的平均灰度值 2 使用T分割图像 产生两组像素 G1包括灰度级大于T的像素 G2包括灰度级小于等于T的像素3 计算G1中像素的平均值并赋值给 1 计算G2中像素的平均值并赋值给 24 计算一个新的阈值 5 重复步骤2 4 一直到两次连续的T之间的差小于预先给定的上界T 基本的全局阈值算法 阈值举例1 选择直方图中双峰之间的谷底作为全局阈值 阈值举例2 通过算法迭代产生全局阈值 单值阈值的问题 单值阈值只能对双峰直方图工作得较好对于其它类型的直方图 需要更多的阈值 单值阈值和光照 不均匀的光照会使单值阈值方案失效 基本的自适应阈值 解决单值阈值无法工作的一个方法是将图像分割为子图像 并分别进行阈值化处理由于每个像素的阈值依赖于其在图像中的位置 因此称为自适应 adaptive 阈值 基本的自适应阈值举例 下图为对前面提到的图像进行自适应阈值后的图像我们看到图像得到了改善 但是需要对出错的图像进行进一步的细分 从而得到更好的效果 Hough变换 Hough 哈夫 变换可以用于将边缘像素连接起来得到边界曲线 它的主要优点在于受噪声和曲线间断的影响较小 Hough变换 Hough变换的基本思想 在xy平面内的一条直线可以表示为 将a b作为变量 ab平面内直线可以表示为 如果点 x1 y1 与点 x2 y2 共线 那么这两点在参数ab平面上的直线将有一个交点在参数ab平面上相交直线最多的点 对应的xy平面上的直线就是我们的解这种从线到点的变换就是Hough变换 Hough变换 得到点A a b 是我们的解 a b 对应到图像坐标系xy中所求直线的斜率和截距 Hough变换 计算步骤 1 对参数空间中参数a和b的可能取值范围进行量化 根据量化结果构造一个累加数组A amin amax bmin bmax 并初始化为零 2 对每个XY空间中的给定点让a取遍所有可能值 计算出b 根据a和b的值累加A A a b A a b 1 3 根据累加后A中最大值所对应的a和b 定出XY中的一条直线 A中的最大值代表了在此直线上给定点的数目 满足直线方程的点就是共线的 Hough变换 算法特点 对a b量化过粗 直线参数就不精确 过细则计算量增加 因此 对a b量化要兼顾参数量化精度和计算量 Hough变换检测直线的抗噪性能强 能将断开的边缘连接起来 此外Hough变换也可用来检测曲线 比如圆 椭圆等 Hough变换 检测圆周 基于过渡区的阈值 过渡区和有效平均梯度有效平均梯度的计算 基于过渡区的阈值 过渡区和有效平均梯度剪切变换的计算对应高端和低端剪切的EAG L 可分别写成EAGhigh L 和EAGlow L 基于过渡区的阈值 有效平均梯度的极值点和过渡区边界设EAGhigh L 和EAGlow L 曲线的极值点分别为Lhigh和Llow 区域生长 分割的目的是把一幅图像划分成一些区域 最直接的方法就是把一幅图像分成满足某种判据的区域 即将点组成区域 为了实现分组 首先要确定区域的数目 其次要确定一个区域与其他区域相区别的特征 最后还要产生有意义分割的相似性判据 区域生长 区域生长一种从单个像素出发 逐渐合并以形成所需分割区域的基于区域的串行分割技术需解决三个问题 1 选择或确定一组能正确代表所需区域的种子像素 2 确定在生长过程中能将相邻像素包括进来的准则 3 制定让生长过程停止的条件或规则 从满足检测准则的点开始 或者已知点 在各个方向上生长出区域 例如 每一步所接受的邻近点的灰度级与种子点的灰度级相差绝对值小于等于T 起始 区域生长的过程 具体步骤 1对图像进行扫描 找到第一个还没有归属的像素 设该像素为 x0 y0 2以 x0 y0 为中心 考虑它的4邻域像素 x y 如果 x y 满足生长准则 则将 x y 与 x0 y0 合并 同时将 x y 压入堆栈 3从堆栈中取出一个像素 同它当做 x0 y0 回到步骤24当堆栈为空时 回到步骤15重复1 4步 直到图像中的每个点都有归属时 生长结束 1T 3 种子点是2 112T 5 种子点是2生长完的图像是什么样子 复习题 1根据点 线对偶性A图像空间中一个点对应参数空间中一条线B参数空间中一个点对应图像空间中一条线C图像空间中共线的3个点对应参数空间中2条线的交点D图像空间中共线的3个点对应参数空间中3条线的交点2累加数组A p q 中的最大值对应A图像中直线斜率的最大值B图像中直线截距的最大值C图像中的点数D图像中共线的点数 3为用区域生长法进行图像分割 需要确定A每个区域的均值B每个区域的种子像素C图像的直方图D在生长过程中能将相连像素包括进来的准则4图像分割的依据有哪些 分别举例说明每种分割有什么样的应用 5令集合R代表整个图像区域 则子集R1 R2 R3 Rn是对R分割的必要条件不包括A各Ri是连通的 i 1 2 nBCP Ri TRUE i 1 2 nD6以下分割算法中属于区域算法的是A分裂合并BHough变换C边缘检测D阈值分割 7图像分割中的并行边界技术和串行区域技术分别利用的是 A不连续性和变化性B连续性和相似性C不连续性和相似性D连续性和变化性8假设图像中有9个点均匀分布在一个十字架上 累加数组中的最大值为 A4B5C8D9 9利用直方图取单阈值方法进行图像分割时 A图像中应仅有一个目标B图像直方图有两个峰C图像中目标和背景应一样大D图像中目标灰度应比背景大 10写出用哈夫变换检测圆形的基本步骤 并解释在如图所示的一幅人眼图像中 如何通过哈夫变换检测出虹膜部分 即如何定位出如图2所示内外两个圆形 图1是进行哈夫变换之前的边缘检测图 图1是二值化图像 标为黑色的点是我们要找的侯选边界点 通过这些边界点来定位内外两个圆 图1 图2 11对下图所示的图像分别用罗伯特算子 普瑞维特算子和索贝尔算子进行边缘检测 采用城区距离的计算方法 分别给出个算子的输出值 12对下图所示的图像用索贝尔算子进行边缘检测 分别采用城区距离 棋盘距离 欧式距离来计算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论