




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程教学设计丹凤学校 霍新体教学内容:一元二次方程学情分析:学生在七年级和八年级已经学习了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基础上本节课将从实际问题入手,抽象出一元二次方程的概念及一元二次方程的一般形式.教学目标知识技能:1、 理解一元二次方程的概念.2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.数学思考:1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力.解决问题:在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.情感态度:1、培养学生自主自主学习、探究知识和合作交流的意识.2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.教学重点:一元二次方程的概念及一般形式.教学难点:1、由实际问题向数学问题的转化过程.2、正确识别一元二次方程一般形式中的“项”及“系数”.教学互动设计:一、自主学习 感受新知【问题1】有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?【分析】设长方形绿地的宽为x米,依题意列方程为:x(x+10)=900;整理得: x2+10x-900=0 【问题2】学校图书馆去年年底有图书5万册,预计至明年年底增加到7.2万册,求这两年的年平均增长率。【分析】设这两年的年平均增长率为x,依题列方程为:5(1+x)2=7.2;整理得: 5 x2+10x-2.2=0 【问题2】学校要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【分析】全部比赛共47=28场,设应邀请x个队参赛,则每个队要与其它 (x-1)队各赛1场,全场比赛共场,依题意列方程得:;整理得: x2-x-56=0 (设计意图:在现实生活中发现并提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性。 同时通过解决实际问题引入一元二次方程的概念,同时可提高学生利用方程思想解决实际问题的能力。)二、自主交流 探究新知【探究】(1)上面三个方程左右两边是含未知数的 整式 (填 “整式”“分式”等);(2)方程整理后含有 一 个未知数;(3)按照整式中的多项式的规定,它们最高次数是 二 次。【归纳】1、一元二次方程的定义等号两边都是 整式 ,只含有 一 个求知数(一元),并且求知数的最高次数是 2 (二次)的方程,叫做一元二次方程。2、一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a0)这种形式叫做一元二次方程的一般形式。其中ax2是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项。【强调】方程ax2+bx+c=0只有当a0时才叫一元二次方程,如果a=0,b0时就是一元一次方程了。所以在一般形式中,必须包含a0这个条件。(设计意图:由于学生已熟练掌握了整式、分式、一元一次方程等概念,所以从未知数的个数及最高次数提问,引导学生归纳共同点是符合学生的认知基础的。学生的自主观察、比较、归纳是活动有效的保证,教学中应当让学生充分的探究和交流。同时,在概念教学中类比是帮助学生正确理解概念的有效方法。)【对应练习】判断下列方程,哪些是一元二次方程?哪些不是?为什么?(1)x3-2x2+5=0; (2)x2=1;(3)5x2-2x-=x2-2x+; (4)2(x+1)23(x+1);(5)x2-2xx2+1; (6)ax2bxc=0(设计意图:此问题采取抢答的形式,提高学生学习数学的兴趣和积极性。其目的是为了及时巩固一元二次方程的概念,同时让学生知道判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断。)三、自主应用 巩固新知【例1】 已知方程(a-3)x|a-1|-2x+5=0,当 a=-1 时,此方程是一元二次方程,当 a=0,2或3 时,此方程是一元一次方程。(设计意图:通过例1的学习,一是使学生进一步巩固一元二次方程的概念,并注意其最基本的条件:未知数的最高次数为2,二次项系数不为0;二是使学生了解一元二次方程与一元一次方程的联系与区别。在填第一个空时要让学生注意a值的取舍,填第二个空时要注意引导学生进行分类讨论。)【例2】将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项【分析】一元二次方程的一般形式是ax2+bx+c=0(a0)因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等解:去括号,得:3x2-3x=5x+10移项合并同类项,得:3x2-8x-10=0其中二次项系数是3,一次项系数是-8,常数项是-10。(设计意图:通过例2的学习,一是使学生进一步掌握一元二次方程的一般形式,并注意强调二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号;二是使学生进一步了解方程的变形过程。)四、自主总结 拓展新知本节课你学了什么知识?从中得到了什么启示?1、a0是ax2+bx+c=0成为一元二次方程的必要条件,否则,方程ax2+bx+c=0变为bx+c=0,就不是一元二次方程。2、找一元二次方程中的二次项系数、一次项系数、常数项,应先将方程化为一般形式。(设计意图:引导学生回顾本节课的学习内容,加强知识的形成。)五、自主检测 反馈新知1、下列方程,是一元二次方程的是 。3x2+x=20, 2x2-3xy+4=0, , x2=0, 2、某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x米,则可列方程为x(x10)200,化为一般形式为x2+10x-200=0。3、方程(m-2)x|m|+3mx+1=0是关于x的一元二次方程,则 m= -2 。4、将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式为 2x2+2x-4=0 ,其中二次项是 2x2 ,二次项系数是 2 ,一次项是 2x ,一次项系数是 2 ,常数项是 -4 。(设计意图:随堂检测学生对新知识的掌握情况,及时了解反馈和调整后续教学内容与教法。)六、课后作业教科书第28页 1 2 5 6 7教学理念与反思 本节内容是九年级数学第二章的第一课时,通过对本节课的学习,学生将掌握一元二次方程的概念及一般形式ax2+bx+c=0(a0)和二次项、二次项系数、一次项、一次项系数和常数项,是典型的概念教学课。 概念教学总是遵循这样的规律:引入概念、形成概念、巩固概念、运用概念和深化概念,在设计教学中也是遵循这一规律,通过学习、交流、应用、总结、检测这五个环节来完成教学任务。首先通过三个问题让学生建立一元二次方程顺利引入到新课;然后通过交流探究归纳出一元二次方程的概念,使学生体会到学习一元二次方程的必要性,探讨一元二次方程的一般形式及相关概念,并学会利用方程解决实际问题,从而获得本课的新知识;再次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 模糊神经网络在船舶状态智能监测中的应用研究
- 景区行政执法管理办法
- 核酸混合试剂管理办法
- 电力大数据助力金融智能化风控
- 供热设备检修管理办法
- 公共卫生中心管理办法
- 物流行业的集聚效应、技术创新与高质量发展路径
- 培训机构审批管理办法
- 普货运输安全生产管理制度
- 教师培训方案:有效处理幼儿告状行为的策略探讨
- 中医执业医师历年真题及解答
- MT/T 1222-2024液压支架再制造工程设计指南
- 2025年7月浙江省普通高中学业水平考试历史仿真模拟卷01(含答案)
- 2024-2025学年人教版PEP六年级下学期期末试卷(含答案含听力原文无音频)
- 2025-2030年中国聚脲涂料行业市场现状供需分析及投资评估规划分析研究报告
- 一级建造师考试安全管理试题及答案
- 镀锌板知识课件
- 2025-2030偏光成像相机行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 猪场退股协议书范本
- 2025海南保亭农水投资有限公司招聘22人笔试参考题库附带答案详解
- 静密封管理制度
评论
0/150
提交评论