勾股定理知识点和单元测试.doc_第1页
勾股定理知识点和单元测试.doc_第2页
勾股定理知识点和单元测试.doc_第3页
勾股定理知识点和单元测试.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

勾股定理知识点勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为,斜边为,那么.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:,化简可证方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积四个直角三角形的面积与小正方形面积的和为大正方形面积为 ,所以方法三:,化简得证. 勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形。. 勾股定理的应用知道两条直角边,求斜边。知道一直边和斜边,求另一直角边。知道直角三角形一边,可得另外两边之间的数量关系可运用勾股定理解决一些实际问题.勾股定理的逆定理如果三角形三边长,满足,那么这个三角形是直角三角形,其中为斜边.勾股数能够构成直角三角形的三边长的三个正整数称为勾股数,即中,为正整数时,称,为一组勾股数记住常见的勾股数可以提高解题速度,如;等3,4,5;6,8,10;9,12,15;12,16,20;成勾股数,即3n,4n,5n成勾股数。用含字母的代数式表示组勾股数:(为正整数);(为正整数)(,为正整数)勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 勾股定理常见题型直接用勾股定理求解。设未知数,运用勾股定理,求解边、面积、周长等问题。将问题转化成勾股定理,如蚂蚁走得路程最小。运用勾股定理的逆定理,求解出三角形式直角三角形,并求出面积。巩固练习1若ABC中,C=90,(1)若a=5,b=12,则c= ;(2)若ab=34,c=10,则a= ,b= .2某农舍的大门是一个木制的矩形栅栏,它的高为2m,宽为1.5m,现需要在对角线上用一块木棒加固,木板的长为 .3直角三角形两直角边长分别为5cm,12cm,则斜边上的高为 .4如图,阴影部分是一个半圆,则阴影部分的面积为(不取近似值)5底边长为16cm,底边上的高为6cm的等腰三角形的腰长为cm6如图,在锐角三角形ABC中,ADBC,AD=12,AC=13,BC=14. 则AB=_.ABCD(第6题)bda(第7题)13m5m(8 题)7如图是一个育苗棚,棚宽a=6m, 棚高b=2.5m,棚长d=10m,则覆盖在棚斜面上的塑料薄膜的面积为_m28在高5m,长13m的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要_m9若ABC的三边a、b、c满足(a-b)(a2+b2-c2)=0,则ABC是 ( ) A. 等腰三角形 B. 等边三角形 C. 等腰直角三角形 D. 等腰三角形或直角三角形10、三角形的三边长分别为 a2b2、2ab、a2b2(a、b都是正整数),则这个三角形是( ) A直角三角形 B钝角三角形 C锐角三角形 D不能确定11、若一个直角三角形的一条直角边长是7cm,另一条直角边比斜边短1cm,则斜边长为 ( ) A.18 cm B.20 cm C.24 cm D.25 cm12、一架2.5m长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角0.7m,如果梯子的顶端沿墙下滑0.4m,那么梯脚移动的距离是 ( ) A. 1.5m B. 0.9m C. 0.8m D. 0.5m13已知RtABC中,C90,若cm,cm,则RtABC的面积为()(A)24cm2 (B)36cm2(C)48cm2(D)60cm214如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()(A) (B)(C) (D)无法确定解答题15如图,已知直角ABC的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积16如图,有一块直角三角形纸片,两直角边AC6cm,BC8cm,现将直角边AC沿直线AD折叠,使它恰好落在斜边AB上,且与AE重合,求CD的长1、如图,已知在ABC中,CDAB于D,AC20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论