




已阅读5页,还剩48页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课前导引 课前导引 课前导引 解析 课前导引 解析 c 链接高考 链接高考 例1 链接高考 例1 解析 链接高考 例1 解析 c 解析 解析 点评 本题考查二次函数 导数 一次函数的图像等基础知识及分析问题的能力 例3 解析 点评 本题主要考查曲线与方程的关系 两曲线交点坐标的求法 分割法求四边形的面积及导数法判断函数单调性和求函数的最值 同时考查综合分析能力 例4 例4 法一 法二 点评 本题主要考查平面向量数量积的计算方法 利用导数研究函数的单调性 以及运用基本函数的性质分析和解决问题的能力 在线探究 在线探究 解析 方法论坛 方法论坛 1 应用导数判断函数的单调性 方法论坛 1 应用导数判断函数的单调性 例1 解析 点评 2 应用导数求函数的极值或最值 解决应用问题 2 应用导数求函数的极值或最值 解决应用问题 例2 用长为90cm 宽为48cm的长方形铁皮做一个无盖的容器 先在四角分别截去一个小正方形 然后把四边翻转90 角 再焊接而成 如图 问该容器的高为多少时 容器的容积最大 最大容积是多少 解析 设容器的高为xcm 容器的体积为v x cm3 则v x x 90 2x 48 2x 4x3 276x2 4320 x 00 那么v x 为增函数 10 x 24时 v x 0 那么v x 为减函数 因此 在定义域 0 24 内 函数v x 只有当x 10时取得最大值 其最大值为v 10 10 90 20 48 20 19600 cm3 答 当容器的高为10cm时 容器的容积最大 最大容积为19600cm3 点评 1 本题主要考查函数的概念 运用导数求函数最值的方法 以及运用数学知识 建立简单数学模型并解决实际问题的能力 实际应用问题要根据题目的条件 写出相应关系式 是解决此类问题的关键 2 求可导函数在闭区间上的最值 只需比较导数为零处的函数值与区间端点处的函数值的大小 3 运用导数的几何意义处理与切线有关的问题 3 运用导数的几何意义处理与切线有关的问题 例3 解析 即q 4 x 24 y 的坐标是s的方程的解 于是q s 这就证明了曲线s关于点a中心对称 点评 本题主要考查导数几何意义的应用 二次函数最值的求法 曲线关于点对称的证明方法及综合分析能力 即q 4 x 24 y 的坐标是s的方程的解 于是q s 这就证明了曲线s关于点a中心对称 4 利用导数解决与单调性 极值 最值等有关的参数范围问题 4 利用导数解决与单调性 极值 最值等有关的参数范围问题 例4 解析 综合 1 2 得5 a 7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动协议书日文
- 大数据分析应用合作协议
- 农民承包土地合同书
- 医疗器械生产质量管理规范联合制定协议
- 经销商合作合同标准范本合集
- 标准劳动合同模板与填写指导
- 报关代理协议4篇
- 广告公司战略合作协议范本7篇
- 的二手房定金标准合同范本5篇
- 新型技术产品使用合同2篇
- CB-Z-807-2016吊舱推进船舶快速模型试验规程
- 产品委托生产委托书
- 14J936变形缝建筑构造
- 2024年共青团入团积极分子考试题库(附答案)
- 全套电子课件:极限配合与技术测量(第五版)
- 结构力学课件
- 人民检察院刑事诉讼法律文书格式样本2022
- 人教版四年级上册语文第一单元测试题(含答案)
- 储能电站项目建设流程详解
- 饮用水配送方案
- 妊娠滋养细胞肿瘤护理查房课件
评论
0/150
提交评论