免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。角的大小是任意的。定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2弧度。若圆心角的弧长为L,则其弧度数的绝对值|=,其中r是圆的半径。定义3 三角函数,在直角坐标平面内,把角的顶点放在原点,始边与x轴的正半轴重合,在角的终边上任意取一个不同于原点的点P,设它的坐标为(x,y),到原点的距离为r,则正弦函数sin=,余弦函数cos=,正切函数tan=,余切函数cot=,正割函数sec=,余割函数csc=定理1 同角三角函数的基本关系式,倒数关系:tan=,sin=,cos=;商数关系:tan=;乘积关系:tancos=sin,cotsin=cos;平方关系:sin2+cos2=1, tan2+1=sec2, cot2+1=csc2.定理2 诱导公式()sin(+)=-sin, cos(+)=-cos, tan(+)=tan, cot(+)=cot;()sin(-)=-sin, cos(-)=cos, tan(-)=-tan, cot(-)=cot; ()sin(-)=sin, cos(-)=-cos, tan=(-)=-tan, cot(-)=-cot; ()sin=cos, cos=sin, tan=cot(奇变偶不变,符号看象限)。定理3 正弦函数的性质,根据图象可得y=sinx(xR)的性质如下。单调区间:在区间上为增函数,在区间上为减函数,最小正周期为2. 奇偶数. 有界性:当且仅当x=2kx+时,y取最大值1,当且仅当x=3k-时, y取最小值-1。对称性:直线x=k+均为其对称轴,点(k, 0)均为其对称中心,值域为-1,1。这里kZ.定理4 余弦函数的性质,根据图象可得y=cosx(xR)的性质。单调区间:在区间2k, 2k+上单调递减,在区间2k-, 2k上单调递增。最小正周期为2。奇偶性:偶函数。对称性:直线x=k均为其对称轴,点均为其对称中心。有界性:当且仅当x=2k时,y取最大值1;当且仅当x=2k-时,y取最小值-1。值域为-1,1。这里kZ.定理5 正切函数的性质:由图象知奇函数y=tanx(xk+)在开区间(k-, k+)上为增函数, 最小正周期为,值域为(-,+),点(k,0),(k+,0)均为其对称中心。定理6 两角和与差的基本关系式:cos()=coscossinsin,sin()=sincoscossin; tan()=定理7 和差化积与积化和差公式:高考不考,不要求掌握定理8 倍角公式:sin2=2sincos, cos2=cos2-sin2=2cos2-1=1-2sin2, tan2=定理9 半角公式:sin=,cos=,tan=定理10 万能公式: , ,定理11 辅助角公式:如果a, b是实数且a2+b20,则取始边在x轴正半轴,终边经过点(a, b)的一个角为,则sin=,cos=,对任意的角.asin+bcos=sin(+).定理12 正弦定理:在任意ABC中有,其中a, b, c分别是角A,B,C的对边,R为ABC外接圆半径。定理13 余弦定理:在任意ABC中有a2=b2+c2-2bcosA,其中a,b,c分别是角A,B,C的对边。定理14 图象之间的关系:y=sinx的图象经上下平移得y=sinx+k的图象;经左右平移得y=sin(x+)的图象(相位变换);纵坐标不变,横坐标变为原来的,得到y=sin()的图象(周期变换);横坐标不变,纵坐标变为原来的A倍,得到y=Asinx的图象(振幅变换);y=Asin(x+)(0)的图象(周期变换);横坐标不变,纵坐标变为原来的A倍,得到y=Asinx的图象(振幅变换);y=Asin(x+)(, 0)(|A|叫作振幅)的图象向右平移个单位得到y=Asinx的图象。定义4 函数y=sinx的反函数叫反正弦函数,记作y=arcsinx(x-1, 1),函数y=cosx(x0, ) 的反函数叫反余弦函数,记作y=arccosx(x-1, 1). 函数y=tanx的反函数叫反正切函数。记作y=arctanx(x-, +). y=cosx(x0, )的反函数称为反余切函数,记作y=arccotx(x-, +).定理16 若,则sinxx0).由y=sinx的图象向左平移个单位,然后保持横坐标不变,纵坐标变为原来的A倍,然后再保持纵坐标不变,横坐标变为原来的,得到y=Asin(x+)的图象;也可以由y=sinx的图象先保持横坐标不变,纵坐标变为原来的A倍,再保持纵坐标不变,横坐标变为原来的,最后向左平移个单位,得到y=Asin(x+)的图象。1已知 是第三象限角,若 ,那么 等于( )ABCD 2已知 是第三象限角,且 ,则 等于( )A B CD 3已知 ,则 等于( )ABCD 4若 ,且 ,则 的值是( )ABCD 5 的值为( )A2B1C2D06已知 ,则 等于( )ABCD 7 的值为( )A1 BC2D48如果 , ,则 的值为?ABCD 9若 ,则 等于( )A BC D 10设 ,则( )AB CD 、 、 互不相等11化简 的值为( )ABCD 12 化简 原式 13若1,则对任意正整数n,的取值为( )A1B区间(0,1)C(2,3)D不能确定14函数在下列区间上是增函数的是( )A,B,CD,15函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电气基础课考试题及答案
- XX集团董事会2025年度工作报告
- 铂族元素项目可行性研究报告
- 锌合金水龙头项目可行性研究报告
- 阿奇霉素项目可行性研究报告
- 高温尼龙项目投资策划方案范文
- 魔芋种植及深加工项目可行性研究报告立项申请报告模板
- 2025年成都百万职工技能大赛(工业机器人系统操作员)备赛试题库(含答案)
- 2026蓝色简约风冬季行车安全教育模板
- 2020-2025年国家电网招聘之财务会计类通关提分题库及完整答案
- DB61∕T 1897-2024 高速公路机电设施设备信息描述及联网规范
- 盆腔脏器脱垂诊断与治疗
- 医院整体搬迁建设项目可行性研究报告
- 西藏自治区林业和草原局事业单位真题2024
- 矿山生态修复方案
- 融媒体保密管理制度
- 公司员工应酬管理制度
- 【安全经验分享】100例事故案例
- 汽车美容安全管理制度
- 2025见证取样员考试题库及参考答案
- 《唱响主旋律弘扬正能量-关于掌握信息化条件下舆论主导权、广泛凝聚社会共识》课件
评论
0/150
提交评论