




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导学图(12)19.2.3特殊四边形(习题课)-自主学习理解特殊四边形的定义; 掌握特殊四边形的性质和判定。会解决问题。理解正方形与矩形,菱形区别与联系。学习目标 一 94101二 (一)复习1知识小结2填空:1、对角线_平行四边形是矩形。ADBCFE(3)2、如图(1)已知O是ABCD的对角线交点,AC24,BD38,AD14,那么OBC的周长等于_。ABDCOABDCO3、在平行四边形ABCD中,CB+D, 则A_,D_。4、已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为_cm。5、菱形ABCD中,A60o,对角线BD长为7cm,则此菱形周长_cm。6、如果一个正方形的对角线长为,那么它的面积_。7、如图(2)矩形ABCD的两条对角线相交于O,AOB60o,AB8,则矩形对角线的长_。8、正方形的对称轴有_条9、如图(3),BD是ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是_10、要从一张长为40cm,宽为20cm的矩形纸片中,剪出长为18cm,宽为12cm的矩形纸片,最多能剪出_张。(二)例题:1如图:在正方形ABCD中,E为CD边上的一点,F为BC的延长线上一点,CECF。DACFB(1)BCE与DCF全等吗?说明理由;(2)若BEC60o,求EFD。E60o2(07年山西)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;(3)延长DF交BC于点M,试判断BM与MC的数量关系(直接写出结论) 导学图(12)19.2.3特殊四边形(习题课)-同步练习一选择:1在ABCD中,A:B:C:D的值可以是( )A、1:2:3:4 B、1:2:2:1C、2:2:1:1 D、2:1:2:12菱形和矩形一定都具有的性质是( )A、对角线相等B、对角线互相垂直C、对角线互相平分D、对角线互相平分且相等3四边形ABCD的对角线AC、BD交于点O,能判定它是正方形的是( )A、AOOC,OBOD B、AOBOCODO,ACBDC、AOOC,OBOD,ACBD D、AOOCOBOD4(07年济南市)下列说法不正确的是( )A有一个角是直角的菱形是正方形B两条对角线相等的菱形是正方形C对角线互相垂直的矩形是正方形D四条边都相等的四边形是正方形5如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( ) A.矩形 B.菱形 C.正方形 D.菱形、矩形或正方形6顺次连结任意四边形四边中点所得的四边形一定是( )A、平行四边形 B、矩形 C、菱形 D、正方形(4)ABCDE7如图(4),平行四边形ABCD中,A的平分线AE交CD于E,AB=5,BC=3,则EC的长( )A、1 B、1.5 C、2 D、38下列矩形中按虚线剪开后,能拼成平行四边形,又能拼成直角三角形的是( )中点中点中点AB CD二、解答题9(07年遵义市)如图所示,正的边长与菱形的边长相等(1)求证:;(2)求的度数 10(07年枣庄)已知:如图,在ABC中,AB=AC,ADBC,垂足为点D,AN是ABC外
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护士企业编制面试题库【网校专用】附答案详解
- 2025年生态修复工程生物多样性保护政策法规解读报告
- 2025年工业互联网平台增强现实交互技术在工业设备故障诊断与处理中的应用报告
- 2025至2030年中国毛球修剪器行业市场全景评估及投资规划建议报告
- 押题宝典高校教师资格证之《高等教育法规》试题及答案详解(有一套)
- 2025版企业知识产权采购合同参考范本
- 2025年涂料行业知识产权保护与许可合同模板
- 2025标识标牌户外广告发布与维护服务合同
- 2025存量房交易资金监管与划拨服务合同
- 2025年地面光伏电站施工劳务分包及安全生产协议
- 枞阳县公共停车场智慧停车项目实施方案
- 小学五年级上册生态生命安全教案
- 2024秋新人教版数学一年级上册教学课件 第四单元 10~20的认识第1课时 10的再认识
- 电梯维修改造施工方案大修
- 国际歌与公社原则讲解:初中历史与音乐跨学科教案
- 高中趣味数学竞赛题目课件
- 配电网自动化技术单选题100道及答案
- 《影视拍摄角度构》课件
- T-CIRA 46-2023 核电厂液态流出物中锶89和锶90分析 液体闪烁法
- 从理论到实践我的博士研究计划解析
- 急性肠胃炎中医讲解
评论
0/150
提交评论