




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行四边形教学设计(第1课时)乐昌市沙坪镇中学 廖才文一、教材分析平行四边形是生活中常见的几何图形,是基本的几何图形之一,它具有丰富的几何性质对于平行四边形,按照图形概念的从属关系,平行四边形首先是四边形,具有四边形的一般性质,又是两组对边分别平行的特殊四边形,是四边形中的一类特殊图形,有它特殊的性质,同时它又包括矩形、菱形、正方形,具有它们的共性这节内容通过拼图引出平行四边形的定义,让学生经历探索、探究研究、讨论的过程,对平行四边形的概念及性质有本质性的理解,同时通过自己动手操作发现平行四边形的很多性质,教师在教学过程中,结合具体的背景适时的提出问题,满足学生多样化的要求,这节内容对以后的菱形、矩形内容的引入埋下伏笔。二、教学目标知识目标1理解平行四边形的定义及有关概念。2能根据定义探索并掌握平行四边形的对边相等、对角相等的性质。3了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明。能力目标1经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维2在进行性质探索的活动过程中,发展学生的探究能力.3在对性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和演绎能力。情感、态度、价值观目标在探究讨论中养成与他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心。教学重点、难点1平行四边形的性质2平行四边形的概念、性质的应用3平行四边形的性质的探究三、教学流程安排活动流程活动内容和目的一、了解四边形与平行四边形的关系二、了解生活中的平行四边形,理解平行四边形的定义三、探究平行四边形的边、角之间的关系四、平行四边形性质的应用五、评价和反思了解四边形与平行四边形的关系,引出课题了解生活中的平行四边形的形象,抽象出平行四边形的定义探究平行四边形的性质。运用性质进行简单的计算和证明学生小结、布置作业四、教学过程设计1.观察抽象,理解概念引言前面我们已经学习了许多图形与几何知识,掌握了一些探索和证明图形几何性质的方法,本节开始,我们继续研究生活中的常见图形.问题1观察下列图片,它们是什么几何图形的形象?师生活动:学生积极踊跃发言,教师用电脑演示从实物中抽象出平行四边形的过程设计意图:通过图片展示,让学生真切感受生活中存在大量平行四边形的原型进而从实际背景中抽象出平行四边形,让学生经历将实物抽象为图形的过程问题你知道什么样的图形叫做平行四边形吗?师生活动:教师引导学生回顾小学学习过的平行四边形的概念:两组对边分别平行的四形叫做平行四边形说明定义的两方面作用:既可以作为性质,又可以作为判定平行四边形的依据介绍平行四边形的表示方法设计意图:给出定义,强调定义的作用.猜想证明,探究性质问题回忆我们的学习经历,研究几何图形的一般思路是什么?师生活动:学生可能难以回答,此时教师引导学生回顾全等三角形的学习过程,得出研究的一般过程:先给出定义,再研究性质和判定教师进一步指出:性质的研究,其实就是对边、角等基本要素的研究设计意图:对图形性质的研究,重在解决研究什么和怎么研究的问题,引导学生通过类比全等三角确定平行四边形性质的研究目标和研究思路问题平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?师生活动:教师引导学生通过观察、度量、提出猜想猜想1:四边形ABCD是平行四边形AB=CD,AD=BC猜想2:四边形ABCD是平行四边形A=C,B=D追问1:你能证明这些结论吗?师生活动:一般地,学生会先考虑分别证明这两个结论,利用平行线的性质证明对角相等,教师引导添加辅助线,利用三角形全等证明对边相等证后会发现用全等可以同时证明这两个结论设计意图:让学生领悟,证明线段相等或角相等通常采用证明三角形全等的方法而图形中没有三角形,只有四边形,我们需要添加辅助线,构造全等三角形,将四边形问题转化为三角形问题来解决,突破难点进而总结提炼出化四边形问题化三角形问题的基本思路追问:通过证明,发现上述两个猜想正确这样得到平行四边形的两个重要性质你能说出这两个命题的题设与结论,并运用这两个性质进行推理吗?师生活动:教师引导学生辨析定理的题设和结论,明确应用性质进行推理的基本模式:四边形ABCD是平行四边形(已知),AB=CD,AD=BC(平行四边形的对边相等),A=C,B=D(平行四边形的对角相等)设计意图:把性质由文字语言转化为符号语言.应用知识,解决问题问题5如图,在ABCD中,DEAB,BFCD,垂足分别为E、F.求证:AE=CF师生活动:师生交流,要证明线段相等,我们可以利用全等三角形性质,而全等的条件可由平行四边形的性质得到.在此基础上,引导学生写出证明过程,并组织学生进行点评.本题也可以先用定义证明四边形DEBF是平行四边形,得到BE=DF,再证AE=CF.设计意图:应用性质进行推理,体会得到证明思路的方法.追问:DE=BF吗?如图,直线ab,A、D为直线a上任意两点,点A到直线b的距离和点D到直线b的距离相等吗?为什么?师生活动:结合前面分析,可以得出如果两条直线平行,那么一条直线上所有点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念.设计意图:结合例题的进一步追问,自然引出平行线间距离的概念.问题6如图,在ABCD中,AE=CF求证:AF=CE师生活动:师生交流,要证AF=CE,需证ADFCBE,由于四边形ABCD是平行四边形,因此有D=B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF由“边角边”可得出所需要的结论引导学生写出证明过程.设计意图:应用平行四边形边、角的性质进行推理,引导学生体验分析解题的思路方法,训练学生演绎推理能力.4开放探究发散思维问题7在ABCD中,AC是平行四边形ABCD的对角线(1)请你说出图中的相等的角、相等的线段;(2)对角线AC需添加一个什么条件,能使平行四边形ABCD的四条边相等?师生活动:学生认真读题、思考、分析、讨论,得出有关结论因为平行四边形的对边相等,对角相等所以AB=CD,AD=BC,DAB=BCD,B=D,又因为平行四边形的两组对边分别平行,DAC=BCA,DCA=BAC.教师根据学生回答,板书有关正确的结论解决第(2)个问题时,学生思考、交流、讨论得出:只要添加AC平分DAB即可.并说明理由:因为平行四边形的两组对边分别平行,所以DCA=BAC,而DAC=BAC,所以DCA=DAC,所以AD=DC,又因为平行四边形的对边相等,AB=DC=AD=BC设计意图:第(1)问,培养学生运用平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天门历史中考试题及答案
- 2025年高处安装、维护、拆除高处作业(复审)模拟考试题库试卷及答案
- 药品调剂与管理办法
- 绿化施工及管理办法
- 装饰装修咨询管理办法
- 行政中心前台管理办法
- 业务外协加工管理办法
- 上海旅游安全管理办法
- 中国农药登记管理办法
- it人才队伍管理办法
- 2025-2030中国宠物可穿戴设备行业市场发展趋势与前景展望战略研究报告
- 科学衔接·共育花开-幼小衔接家长培训指南
- 高一年级数学上册(人教版)《教材全解全析》1
- 2025至2030中国瑶族药浴行业前景调研与投资价值评估研究报告
- 2025衡水学院教师招聘考试试题及答案
- 体检科质量控制岗位职责
- 割草机知识培训课件图片
- 语文教研组活动内容
- 邮政邮件内部处理业务外包服务投标方案(技术方案)
- 高效学习主题班会课件
- 江西省上进联考2024-2025 学年高三2月统一调研测试历史试卷(含答案解析)
评论
0/150
提交评论