水泥化学知识.doc_第1页
水泥化学知识.doc_第2页
水泥化学知识.doc_第3页
水泥化学知识.doc_第4页
水泥化学知识.doc_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

化学知识部分阿伏加德罗定律Avogadros hypothesis定义:同温同压同体积的气体含有相同的分子数。推论:(1)同温同压下,V1/V2=n1/n2(2)同温同体积时,p1/p2=n1/n2=N1/N2(3)同温同压等质量时,V1/V2=M2/M1 (4)同温同压同体积时,M1/M2=1/2同温同压下,相同体积的任何气体含有相同的分子数,称为阿伏加德罗定律。气体的体积是指所含分子占据的空间,通常条件下,气体分子间的平均距离约为分子直径的10倍,因此,当气体所含分子数确定后,气体的体积主要决定于分子间的平均距离而不是分子本身的大小。分子间的平均距离又决定于外界的温度和压强,当温度、压强相同时,任何气体分子间的平均距离几乎相等(气体分子间的作用微弱,可忽略),故定律成立。该定律在有气体参加的化学反应、推断未知气体的分子式等方面有广泛的应用。阿伏加德罗定律认为:在同温同压下,相同体积的气体含有相同数目的分子。1811年由意大利化学家阿伏加德罗提出假说,后来被科学界所承认。这一定律揭示了气体反应的体积关系,用以说明气体分子的组成,为气体密度法测定气态物质的分子量提供了依据。对于原子分子说的建立,也起了一定的积极作用。中学化学中,阿伏加德罗定律占有很重要的地位。它使用广泛,特别是在求算气态物质分子式、分子量时,如果使用得法,解决问题很方便。下面简介几个根据克拉伯龙方程式导出的关系式,以便更好地理解和使用阿佛加德罗定律。克拉伯龙方程式通常用下式表示:PV=nRTP表示压强、V表示气体体积、n表示物质的量、T表示绝对温度、R表示气体常数。所有气体R值均相同。如果压强、温度和体积都采用国际单位(SI),R=8.31帕米3/摩尔开。如果压强为大气压,体积为升,则R=0.082大气压升/摩尔度。因为n=m/M、=m/v(n物质的量,m物质的质量,M物质的摩尔质量,数值上等于物质的分子量,气态物质的密度),所以克拉伯龙方程式也可写成以下两种形式:Pv=m/MRT和Pm=RT以A、B两种气体来进行讨论。(1)在相同T、P、V时:根据式:nA=nB(即阿伏加德罗定律)分子量一定摩尔质量之比=密度之比=相对密度)。若mA=mB则MA=MB。(2)在相同TP时:体积之比=摩尔质量的反比;两气体的物质的量之比=摩尔质量的反比)物质的量之比=气体密度的反比;两气体的体积之比=气体密度的反比)。(3)在相同TV时:摩尔质量的反比;两气体的压强之比=气体分子量的反比)。阿佛加德罗定律推论一、阿伏加德罗定律推论我们可以利用阿伏加德罗定律以及物质的量与分子数目、摩尔质量之间的关系得到以下有用的推论:(1)同温同压时:V1:V2=n1:n2=N1:N2 1:2M1:M2 同质量时:V1:V2=M2:M1(2)同温同体积时: p1:p2=n1:n2=N1:N2 同质量时: p1:p2=M2:M1(3)同温同压同体积时: 1:2=M1:M2m1:m2具体的推导过程请大家自己推导一下,以帮助记忆。推理过程简述如下:(1)、同温同压下,体积相同的气体就含有相同数目的分子,因此可知:在同温同压下,气体体积与分子数目成正比,也就是与它们的物质的量成正比,即对任意气体都有V=kn;因此有V1:V2=n1:n2=N1:N2,再根据n=m/M就有式;若这时气体质量再相同就有式了。(2)、从阿伏加德罗定律可知:温度、体积、气体分子数目都相同时,压强也相同,亦即同温同体积下气体压强与分子数目成正比。其余推导同(1)。(3)、同温同压同体积下,气体的物质的量必同,根据n=m/M和=m/V就有式。当然这些结论不仅仅只适用于两种气体,还适用于多种气体。二、相对密度在同温同压下,像在上面结论式和式中出现的密度比值称为气体的相对密度D=1:2=M1:M2。注意:.D称为气体1相对于气体2的相对密度,没有单位。如氧气对氢气的密度为16。.若同时体积也相同,则还等于质量之比,即D=m1:m2。 阿伏加德罗定律推论阿伏加德罗定律及推论都可由理想气体状态方程及其变形推出( , 压强、 体积、 绝对温度、 物质的量、 气体常数、 密度)。由定律可导出:“一连比、三正比、三反比”的规律。1“一连比”:指在同温同压下,同体积的任何气体的质量比等于摩尔质量(相对分子质量)之比,等于密度比。2“三正比”(1)同温同压下,两气体的体积之比等于其物质的量之比,等于其分子数之比。(2)同温同体积下,两气体的压强之比等于其物质的量之比,等于其分子数之比。(3)同温同压下,两气体的密度之比等于其摩尔质量(相同分子质量)之比。3“三反比”(1)同温同压同质量下,两气体的体积与其摩尔质量(相对分子质量)成反比。(2)同温同分子数(或等物质的量)时,两气体的压强与其体积成反比。(3)同温同体积同质量下(同密度时),两气体的压强与其摩尔质量(相对分子质量)成反比。 质量守恒定律 在化学反应中,参加反应前各物质的质量总和等于反应后生成各物质的质量总和。这个规律就叫做质量守恒定律(law of conservation of mass)。它是自然界普遍存在的基本定律之一。在任何与周围隔绝的体系中,不论发生何种变化或过程,其总质量始终保持不变。或者说,任何变化包括化学反应和核反应都不能消除物质,只是改变了物质的原有形态或结构,所以该定律又称物质不灭定律。 编辑本段(1)质量守恒定律简解自然界的基本定律之一。在任何与周围隔绝的物质系统(孤立系统)中,不论发生何种变化或过程,其总质量保持不变。18世纪时法国化学家拉瓦锡从实验上推翻了燃素说之后,这一定律始得公认。20世纪初以来,发现高速运动物体的质量随其运动速度而变化,又发现实物和场可以互相转化,因而应按质能关系考虑场的质量。质量概念的发展使质量守恒原理也有了新的发展,质量守恒和能量守恒两条定律通过质能关系合并为一条守恒定律,即质量和能量守恒定律。 质量守恒定律在19世纪末作了最后一次检验,那时候的精密测量技术已经高度发达。结果表明,在任何化学反应中质量都不会发生变化(哪怕是最微小的)。例如,把糖溶解在水里,则溶液的质量将严格地等于糖的质量和水的质量之和。实验证明,物体的质量具有不变性。不论如何分割或溶解,质量始终不变。在任何化学反应中质量也保持不变。燃烧前碳的质量与燃烧时空气中消耗的氧的质量之和准确地等于燃烧后所生成物质的质量。质量守恒定律即,在化学反应中,参加反应的各物质的总和等于反应后生成的各物质总和。微观解释:在化学反应中,原子的种类,数目,质量均不变。 编辑本段(2) 质量守恒定律发现简史1756年俄国化学家罗蒙诺索夫1把锡放在密闭的容器里煅烧,锡发生变化,生成白色的氧化锡,但容器和容器里的物质的总质量,在煅烧前后并没有发生变化。经过反复的实验,都得到同样的结果,于是他认为在化学变化中物质的质量是守恒的。但这一发现当时没有引起科学家的注意,直到1777年法国的拉瓦锡做了同样的实验,也得到同样的结论,这一定律才获得公认。但要确切证明或否定这一结论,都需要极精确的实验结果,而拉瓦锡时代的工具和技术(小于0.2%的质量变化就觉察不出来)不能满足严格的要求。因为这是一个最基本的问题,所以不断有人改进实验技术以求解决。1908年德国化学家朗道耳特(Landolt)及1912年英国化学家曼莱(Manley)做了精确度极高的实验,所用的容器和反应物质量为1 000 g左右,反应前后质量之差小于0.000 1 g,质量的变化小于一千万分之一。这个差别在实验误差范围之内,因此科学家一致承认了这一定律。 编辑本段(3) 质量守恒定律的发展自从爱因斯坦(Einstein)提出狭义相对论和质能关系公式(E=mc2)以后,说明物质可以转变为辐射能,辐射能可以转变为物质。这个结论对质量守恒定律在化学中的应用有何影响呢?实验结果证明1 000 g硝化甘油爆炸之后,放出的能量为8.0106 J。根据质能关系公式计算,产生这些能量的质量是8.910-8 g,与原来1 000 g相比,差别小到不能用现在实验技术所能测定。从实用观点来看,可以说在化学反应中,质量守恒定律是完全正确的。 20世纪以来,人们发现原子核裂变所产生的能量远远超过最剧烈的化学反应。1 000 g 铀235裂变的结果,放出的能量为8.231016 J,与产生这些辐射能相等的质量为0.914 g,和原来1 000 g相比,质量变化已达到千分之一。于是人们对质量守恒定律就有了新的认识。在20世纪以前,科学家承认两个独立的基本定律:质量守恒定律和能量守恒定律。现在科学家则将这两个定律合而为一,称它为质能守恒定律。1756年俄国M.V.罗蒙诺索夫首先测定化学反应中物质的重量关系,将锡放在密闭容器中燃烧,反应前后重量没有变化,由此得出结论:“参加反应的全部物质的重量,常等于全部反应产物的重量。”1774年法国A.-L.拉瓦锡重复类似的实验,并得出同样的结论。由于罗蒙诺索夫和拉瓦锡时代所用的天平不够精密,所以后来又有不少科学家用更精确的方法证明这一定律。例如19世纪中叶,比利时分析化学家J.-S.斯塔用银和碘制备碘化银,所得碘化银的质量与碘和银的总质量只相差0.002。19世纪末,H.H.兰多尔特用很精密的天平再一次证明这一定律的正确性。20世纪,爱因斯坦推导出了狭义相对论,他指出,物质的质量和它的能量成正比,可用以下公式表示:E=mc2式中E为能量;m为质量;c为光速。以上公式说明物质可以转变为辐射能,辐射能也可以转变为物质。这一现象并不意味着物质会被消灭,而是物质的静质量转变成另外一种运动形式。(由于当时科学的局限,这条定律只在微观世界得到验证,后来又在核试验中得到验证)所以20世纪以后,这一定律已经发展成为质量守恒定律和能量守恒定律,合称质能守恒定律。 化学平衡目录隐藏化学平衡的含义 化学平衡研究的历史 化学平衡的特征 影响化学平衡的因素 可逆反应达到化学平衡编辑本段化学平衡的含义根据吉布斯自由能判据,当rGm=0时,反应达最大限度,处于平衡状态。化学平衡的建立是以可逆反应为前提的。可逆反应是指在同一条件下既能正向进行又能逆向进行的反应。绝大多数化学反应都具有可逆性,都可在不同程度上达到平衡。从动力学角度看,反应开始时,反应物浓度较大,产物浓度较小,所以正反应速率大于逆反应速率。随着反应的进行,反应物浓度不断减小,产物浓度不断增大,所以正反应速率不断减小,逆反应速率不断增大。当正、逆反应速率相等时,系统中各物质的浓度不再发生变化,反应达到了平衡。 编辑本段化学平衡研究的历史19世纪50-60年代,热力学的基本规律已明确起来,但是一些热力学概念还比较模糊,数字处理很烦琐,不能用来解决稍微复杂一点的问题,例如化学反应的方向问题。当时,大多数化学家正致力于有机化学的研究,也有一些人试图解决化学反应的方向问题。这种努力除了质量作用定律之外,还有其他一些人试图从别的角度进行反应方向的探索,其中已有人提出了一些经验性的规律。在这一时期,丹麦人汤姆生和贝特罗试图从化学反应的热效应来解释化学反应的方向性。他们认为,反应热是反应物化学亲合力的量度,每个简单或复杂的纯化学性的作用,都伴随着热量的产生。贝特罗更为明确地阐述了与这相同的观点,并称之为“最大功原理”,他认为任何一种无外部能量影响的纯化学变化,向着产生释放出最大能量的物质的方向进行。虽然这时他发现了一些吸热反应也可以自发地进行,但他却主观地假定其中伴有放热的物理过程。这一错误的论断在30年代终于被他承认了,这时他才将“最大功原理”的应用范围限制在固体间的反应上,并提出了实际上是“自由焓”的化学热的概念。19世纪60-80年代,霍斯特曼、勒夏特列和范霍夫在这一方面也做了一定的贡献。首先,霍斯特曼在研究氯化铵的升华过程中发现,在热分解反应中,其分解压力和温度有一定的关系,符合克劳胥斯一克拉佩隆方程:dp/dt=Q/T(V-V)其中Q代表分解热,V、V代表分解前后的总体积。范霍夫依据一述方程式导出的下式:lnK=-(Q/RT)+c此式可应用于任何反应过程,其中Q代表体系的吸收的热(即升华热)。范霍夫称上式为动态平衡原理,并对它加以解释,他说,在物质的两种不同状态之间的任何平衡,因温度下降,向着产生热量的两个体系的平衡方向移动。1874年和1879年,穆迪埃和罗宾也分别提出了这样的原理。穆迪埃提出,压力的增加,有利于体积相应减少的反应发生。在这之后,勒夏特列又进一步普遍地阐释了这一原理。他说,处于化学平衡中的任何体系,由于平衡中的多个因素中的一个因素的变动,在一个方向上会导致一种转化,如果这种转化是惟一的,那么将会引起一种和该因素变动符号相反的变化。然而,在这一方面做出突出贡献的是吉布斯,他在热力化学发展史上的地位极其重要。吉布斯在势力化学上的贡献可以归纳4个方面。第一,在克劳胥斯等人建立的第二定律的基础上,吉布斯引出了平衡的判断依据,并将熵的判断依据正确地限制在孤立体系的范围内。使一般实际问题有了进行普遍处理的可能。第二,用内有、熵、体积代替温度、压力、体积作为变量对体系状态进行描述。并指出汤姆生用温度、压力和体积对体系体状态进行描述是不完全的。他倡导了当时的科学家们不熟悉的状态方程,并且在内能、熵和体积的三维坐标图中,给出了完全描述体系全部热力学性质的曲面。第三,吉布斯在热力学中引入了“浓度”这一变量,并将明确了成分的浓度对内能的导数定义为“热力学势”。这样,就使热力学可用于处理多组分的多相体系,化学平衡的问题也就有了处理的条件。第四,他进一步讨论了体系在电、磁和表面的影响下的平衡问题。并且,他导出了被认是热力学中最简单、最本质也是最抽象的热力学关系,即相律,在,而平衡状态就是相律所表明的自由度为零的那种状态。吉布斯对平衡的研究成果主要发表在他的三篇文章之中。1873年,他先后将前两篇发表在康涅狄格州学院的学报上,立即引起了麦克斯韦的注意。吉布斯前两篇文可以说只是一个准备,1876年和1878年分两部分发表了第三篇文章-关于复相物质的平衡,文章长达300多页,包括700多个公式。前两篇文章是讨论单一的化学物质体系,这篇文章则对多组分复相体系进行了讨论。由于热力学势的引入,只要将单组分体系状态方程稍加变化,便可以对多组分体系的问题进行处理了。对于吉布斯的工作,勒夏特列认为这是一个新领域的开辟,其重要性可以与质量不灭定律相提并论。然而,吉布斯的三篇文章发表之后,其重大意义并未被多数科学家们所认识到,直到1891年才被奥斯特瓦德译成德文,1899年勒夏特列译成法文出版之后,情况顿然改变。在吉布斯之后,热力学仍然只能处理理想状态的体系。这时,美国人洛易斯分别于1901年和1907年发表文章,提出了“逸度”与“活度”的概念。路易斯谈到“逃逸趋势”这一概念,指出一些热力学量,如温度、压力、浓度、热力学势等都是逃逸趋势量度的标度。路易斯所提出的逸度与活度的概念,使吉布斯的理论得到了有益的补充和发展,从而使人们有可能将理想体系的偏差进行统一,使实际体系在形式上具有了与理想体系完全相同的热力学关系式。综上所述,化学平衡状态是指在一定条件下的可逆反应,正反应和逆反应的速率相等,反应混合物中各组分的浓度保持不变的状态。 编辑本段化学平衡的特征化学平衡状态具有逆,等,动,定,变、同等特征。逆:化学平衡研究的对象是可逆反应。等:平衡时,正逆反应速率相等,即v正=v逆。(对于同一个物质,v正=v逆数值上相等;对于不同物质,vA正:vB逆=a:b,即等于系数比)动:平衡时,反应仍在进行,是动态平衡,反应进行到了最大程度。定:达平衡状态时,反应混合物中各组分的浓度保持不变,反应速率保持不变,反应物的转化率保持不变,各组分的含量保持不变。变:化学平衡跟所有的动态平衡一样,是有条件的,暂时的,相对的,当条件发生变化时,平衡状态就会被破坏,由平衡变为不平衡,再在新的条件下建立新平衡。同:对于一个确定的可逆反应,不管是从反应物开始反应,还是从生成物开始反应,抑或是从反应物和生成物同时开始, 只要满足各组分物质浓度相当,都能够达到相同的平衡状态。 编辑本段影响化学平衡的因素影响化学平衡的因素有很多.如压强温度浓度等.(注意:催化剂不影响化学平衡,仅影响反应速率)在其他条件不变的情况下,增大反应物浓度或减小生成物浓度,可使平衡向正反应方向移动,反之,向逆反应方向移动;对于有气体参加的反应,在其他条件不变的情况下,增大压强,可使平衡向体积减小的方向移动,反之,向体积增大方向移动; NO2-N2O4平衡球在其他条件不变的情况下,升高体系的温度,可使平衡向吸热方向移动,反之,向放热的方向移动。在其他条件不变的情况下,加入催化剂,化学平衡不移动。勒夏特列原理:如果改变影响平衡的一个条件(浓度压强或温度等),平衡就向能够减弱这种改变的方向移动。 关于气体的化学平衡有这两种 基本模型,即一种是容积不变,一种是压强不变。对于一个反应Ma+Nb=Qc+Dp 其中M,N,Q,D为方程式前的计量数。第一大类;TV不变,即容积不变时1.M+NQ+D 或M+NQ+D 或M+N在哲学杂志上发表了他测量热功当量的实验报告。此后,他还进行了更多更细的工作,测定了更精确的当量值。1850年,他发表的结果是:“要产生一磅水(在真空中称量,其温度在55和60之间)增加华氏1的热量,需要消耗772英磅下落一英尺所表示的机械功。”焦耳的工作,为“力的守恒”原理奠定了坚实的实验基础。德国科学家亥姆霍兹于1847年发表了他的著作论力的守恒。文中,他提出了一切自然现象都应用中心力相互作用的质点的运动来解释由此证明了活力与张力之和对中心力守恒的结论。进面,他还讨论了热现象、电现象、化学现象与机械力的关系,并指出了把“力的守恒”原理运用到生命机体中去的可能性。由于亥姆霍兹的论述方式很有物理特色,故他的影响要比迈耳和焦耳大。虽然,到此为止,定律的发现者们还是把能量称作“力”;而且定律的表述也不够准确,但实质上他们已发现了能量的转化和守恒定律了。将两种表述比较,可以看出:“力的守恒”比“永动机不能造成”要深刻得多。“力的守恒”涉及的是当已认识到的物质的一切运动形式;同时,它是在一定的哲学思想指导下(迈耳),在实验的基础上(焦耳),用公理化结构(亥姆霍兹)建立起的理论。如果现在仍用“永动机不能造成”来表述定律的话,那已赋予它新的内涵了,即现在的机器可以是机械的,也可以是热的,电磁的、化学的,甚至可以是生物的了;同时,永动机不能永动的原因也得到揭示。另外,也要看到,“力的守恒”原理虽然有焦耳的热功当量和电热当量的关系式,还有亥姆霍兹推出的各种关系式,但它们都是各自独立的,还没能用一个统一的解析式来表述。因此“力的守恒”还是不够成熟的。3定律的解析表述热力学第一定律(18501875)要对定律进行解析表述,只有对“热量”、“功”、“能量”和“内能”这些概念的准确定义才行。“热量”的慨念早在十八世纪就给出了,就是热质的量。1829年,蓬斯莱(JV Poncelet 17881867)在研究蒸汽机的过程中,明确定义了功为力和距离之积。而“能量”的概念则是1717年,J伯努力(JBernoulli 16671748)在论述虚位移时就采用过了的。托马斯扬于1805年就把力称为能量,用过了的。托马斯扬于1805年就把力称为能量,由此定义了扬氏模量。但他们的定义一直未被人们接受,难怪迈耳、焦耳和亥姆霍兹还用“力”来称为能量。这对定律的表述极不利,再加上热质说的影响还远未肃清,因此“力的守恒”原理一直不为大多数人所接受。当然,也有一批有识之士认识到定律的重大意义并为它的完善进行了卓有成效的工作。其中最著名的是英国的W汤姆孙(WThomson18241907)和德国的克劳修斯(RClausius 18221888)正是他们在前人的基础上提出了热力学第一和第二定律,由此建立了热力学理论体系的大厦。1850年,克劳修斯在德文版物理学和化学年报第79卷上,发表了论热的动力和能由此推出的关于热学本身的定律的论文。文中指出:卡诺定理是正确的,但要用热运动说并加上另外的方法证明才行。他认为,单一的原理即“在一切由热产生功的情况,有一个和产生功成正比的热量被消耗掉,反之,通过消耗同样数量的功也能产生这样数量的热。”是不够的;还得加上一个原理即“没有任何力的消耗或其它变化的情况下,就把任意多的热量从一个冷体移到热体,这与热素来的行为相矛盾。”来论证。他说,只有这佯,才能把热看成一种状态量。接下来他作了以下的十分重要的工作:对于永久气体,下式成立:pV=R(273+t) (1)P是压力,V是单位质量的体积,t是摄氏温度。再考虑微小的卡诺循环,可由(1)式得出这一过程中所做的功为:同时也可计算这一过程消耗的热量:设热功当量的系数为A,应用焦耳原理,由(2)和(3)得:这时克劳修斯引进了一个新的态函数U,(4)式变为:对于这个新的态函数,他指出“其性质有如人们通常所说的那样,假定它为总热量,是一个V和t的函数,由变化的过程的初态和终态完全确定。”U=U(V,t) (6)就这样,他得出了热力学第一定律的解析式:dQ=dU=dW (7)我们知道,一个知识领域只有发展到了揭示和把握对象的规定和量的联系时,也就是当用上了数学工具时,它才真正成为了一门科学。因此,只有到了这个时候,能量的转化和守恒定律才同热力学第二定律的熵的表述一起构成了热力学的理论体系的基础。1853年,W汤姆孙重新提出了能量的定义。他是这样说的:“我们把给定状态中的物质系统的能量表示为:当它从这个给定状态无论以什么方式过渡到任意一个固定的零态时,在系统外所产生的用机械功单位来量度的各种作用之和。”他还把态函数U称为内能。直到这时,人们才开始把牛顿的“力”和表征物质运动的“能量”区别开来,并广泛使用。在此基础上,苏格兰的物理学家兰金*(WJMRankine 18201872)才把“力的守恒”原理改称为“能量守恒”原理。热力学理论建立之后,很多人还是觉得不好理解,尤其是第二定律。为此,从1854年起,克劳修斯作了大量的工作,努力寻找一种为人们容易接受的证明方法来解释这两条原理(当时还是叫原理),并多次用通俗的语言进行宣讲。这样,直到1860年左右,能量原理才被人们普遍承认。4定律的准确表述能量的转化和守恒定律(18751909)1860年后,能量定律“很快成为全部自然科学的基石。特别是在物理学中,每一种新的理论首先要检验它是否跟能量守恒原理相符合。”但是,时至那时,原理的发现者们还只是着重从量的守恒上去概括定律的名称,而没强调运动的转比。那到底是什么时候原理才被概括成“能量的转比和守恒定律”的呢?从恩格斯在反杜林论的一段论述中,可以得到问题的答案。恩格斯说:“如果说,新发现的、伟大的运动基本规律,十年前还仅仅慨括为能量守恒定律,仅仅概括为运动不生不灭这种表述,就是说,仅仅从量方面概括它,那么这种狭隘的、消极的表述日益被那种关于能量的转化的积极表述所代替,在这里过程的质的内容第一次获得了自己的权利,”恩格斯这段话发表于1885年,他说十年前消极表述日益被积极表述所代替,由此判断,“能量的转化和守恒定律”这一准确而完善的表述应形成于1875年或稍后一点。到此为止,似乎有关定律的一切问题都解决了。其实不然。我们知道,直到二十世纪初,热力学中的一个重要基本概念热量还是沿用的十八世纪的定义,而这个定义是以热质说为基础的。也就是说,在热力学大厦的基石中还有一块是不牢固的。因此,1909年,喀喇氏(CCaratheeodory)对内能进行了重新定义:“任何一个物体或物体系在平衡态有一个态函数U,叫做它的内能,当这个物体从第一态经过一个绝热过程到第二态后,它的内能的增加等于在过程中外界对它所做的功W。”U2-U1=W (8)这样定义的内能就与热量毫不相关了,它只与机械能和电磁能有关。在这一基础上可以反过来定义热量:Q=U2-U1-W (9)直到这个时候,热力学第一定律(能量的转化和守恒定律)、第二定律及整个热力学理论才同热质说实行了最彻底的决裂。综观全文,可知“能量的转化和守恒定律”的三种表述反映了人类认识这一自然规律的历程。这三种表述一种比一种更深刻,一种比一种更接近客观真理。人类正是这样一步一步地认识物质世界的。转载自作者:王骁勇 编辑本段能量守恒定律的检验任何物理学定律都需要经过严格的,反复的检验,特别是在把特点领域里发现的定律移植到其他相关领域的时候,往往会发生定律被破坏的情况,比如宇称守恒定律在弱相互作用和电磁相互作用中先后被实验打破。这是不以人的意志为转移的,即使是被人类社会广泛认同的定律,在没有经过严格检验的领域内,仍然不能一厢情愿地认为它是正确的。焦耳在研究机械能和热能的基础上提出能量守恒定律,当时科学界还不了解电磁相互作用,所以能量守恒定律没有经过在电磁相互作用下的检验。我们知道,在一般情况下电磁能是符合能量守恒定律的,但是不能排除特殊情况下的例外,比如宇称守恒定律也曾经被证明在一般电磁相互作用中是正确的,但是后来被发现在Anapole的特殊结构中就不正确。由于电磁结构的多样性和复杂性,给物理学定律的检验带来很大的困难,导致这样的检验是漫长的,没有止境的。我们可以说能量守恒定律在现有的知识领域内是正确的,但是如果说它在任何领域,任何情况下永远正确就不是科学研究者应有的态度。电荷守恒定律 物理学的基本定律之一 。它指出,对于一个孤立系统,不论发生什么变化 ,其中所有电荷的代数和永远保持不变。电荷守恒定律表明,如果某一区域中的电荷增加或减少了,那么必定有等量的电荷进入或离开该区域;如果在一个物理过程中产生或消失了某种符号的电荷,那么必定有等量的异号电荷同时产生或消失。要使物体带电,可利用摩擦起电、接触起电、静电感应1(感应起电)等方法。物体是否带电,通常可用验电器来检验。物体带电实际上是获得或失去电子的结果。这意味着电荷不能离开电子、质子而存在。电荷乃是电子、质子等微观粒子所具有的一种属性。由摩擦起电和其他起电过程的大量实验事实表明,一切起电过程其实都是使物体上正、负电荷分离或转移的过程中,在这种过程中,电荷既不能消灭,也不能创生,只能使原有的电荷重新分布。由此就可以总结出电荷守恒定律:一个孤立系统的总电荷(即系统中所有正、负电荷之代数和)在任何物理过程中始终保持不变。所谓孤立系统,就是指它与外界没有电荷的交换。电荷守恒定律也是自然界中一条基本的守恒定律,在宏观和微观领域中普遍适用。 电荷守恒定律:电荷是物质的属性,它不是凭空产生或消失,只能从一个物体转移到另一个物体上,这就是电荷守恒定律。也可以表述为,在一个没有净电荷出入其边界的系统,其中正负电荷电量的代数和保持不变。编辑词条 动量守恒定律目录隐藏动量守恒定律 碰撞 反冲现象 动量守恒定律的本质 1. 爆炸与碰撞的比较动量守恒定律 碰撞 反冲现象 动量守恒定律的本质 1. 爆炸与碰撞的比较编辑本段动量守恒定律1.定律内容:如果一个系统不受外力或所受外力之和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律1.说明:(1)动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,它是一个实验规律,也可用牛顿第三定律和动量定理推导出来;(2)动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大基本守恒定律。最初它们是牛顿定律的推论, 但后来发现它们的适用范围远远广于牛顿定律, 是比牛顿定律更基础的物理规律, 是时空性质的反映。其中, 动量守恒定律由空间平移不变性推出, 能量守恒定律由时间平移不变性推出, 而角动量守恒定律则由空间的旋转对称性推出;(3)相互间有作用力的物体系称为系统,系统内的物体可以是两个、三个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论