




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
八年级上册 12 2三角形全等的判定 第1课时 庆化学校金刚 学习目标 1 构建三角形全等条件的探索思路 体会研究几何问题的方法 2 探索并理解 边边边 判定方法 会用 边边边 判定方法证明三角形全等 3 会用尺规作一个角等于已知角 了解作图的道理 学习重点 构建三角形全等条件的探索思路 边边边 判定方法 课件说明 A A AB A B 已知 ABC A B C 找出其中相等的边与角 思考满足这六个条件可以保证 ABC A B C 吗 创设情境 导入新知 B B BC B C C C AC A C 追问1当满足一个条件时 ABC与 A B C 全等吗 动脑思考 分类辨析 思考如果只满足这些条件中的一部分 那么能保证 ABC A B C 吗 思考如果只满足这些条件中的一部分 那么能保证 ABC A B C 吗 两个条件 追问2当满足两个条件时 ABC与 A B C 全等吗 动脑思考 分类辨析 思考如果只满足这些条件中的一部分 那么能保证 ABC A B C 吗 三个条件 追问3当满足三个条件时 ABC与 A B C 全等吗 满足三个条件时 又分为几种情况呢 动脑思考 分类辨析 画法 1 画线段B C BC 2 分别以B C 为圆心 BA BC为半径画弧 两弧交于点A 3 连接线段A B A 动手操作 验证猜想 先任意画出一个 ABC 再画出一个 A B C 使A B AB B C BC A C AC 把画好的 A B C 剪下 放到 ABC上 它们全等吗 边边边公理 三边对应相等的两个三角形全等 简写为 边边边 或 SSS 动脑思考 得出结论 思考作图的结果反映了什么规律 你能用文字语言和符号语言概括吗 在 ABC与 A B C 中 ABC A B C SSS 判断两个三角形全等的推理过程 叫做证明三角形全等 用符号语言表达 动脑思考 得出结论 证明 D是BC中点 BD DC 在 ABD与 ACD中 ABD ACD SSS 应用所学 例题解析 例如图 有一个三角形钢架 AB AC AD是连接点A与BC中点D的支架 求证 ABD ACD 作法 1 以点O为圆心 任意长为半径画弧 分别交OA OB于点C D 已知 AOB 求作 A O B AOB 用尺规作一个角等于已知角 应用所学 例题解析 O D B C A 作法 2 画一条射线O A 以点O 为圆心 OC长为半径画弧 交O A 于点C 已知 AOB 求作 A O B AOB 用尺规作一个角等于已知角 应用所学 例题解析 O C A O D B C A 作法 3 以点C 为圆心 CD长为半径画弧 与第2步中所画的弧交于点D 已知 AOB 求作 A O B AOB 用尺规作一个角等于已知角 应用所学 例题解析 O D C A O D B C A 作法 4 过点D 画射线O B 则 A O B AOB 已知 AOB 求作 A O B AOB 用尺规作一个角等于已知角 应用所学 例题解析 O D B C A O D B C A 作法 1 以点O为圆心 任意长为半径画弧 分别交OA OB于点C D 2 画一条射线O A 以点O 为圆心 OC长为半径画弧 交O A 于点C 3 以点C 为圆心 CD长为半径画弧 与第2步中所画的弧交于点D 4 过点D 画射线O B 则 A O B AOB 已知 AOB 求作 A O B AOB 用尺规作一个角等于已知角 应用所学 例题解析 1 本节课学习了哪些主要内容 2 探索三角形全等的条件 其基本思路是什么 3 SSS 判定方法有何作用 课堂小结 布置作业 必做题 教科书习题12 2第1 9题 选做题 如图 ABC和 EFD中 AB EF AC ED 点B D C F在一条直线上 1 添加一个条件 由 SSS 可判定 ABC EFD 2 在 1 的基础上 求证 AB EF 课件说明 本课是在学生已经学习了全等三角形的概念和性质的基础上 探究三角形全等的条件 并以 边边边 条件为例 理解 掌握三角形全等的判定 学习目标 1 构建三角形全等条件的探索思路 体会研究几何问题的方法 2 探索并理解 边边边 判定方法 会用 边边边 判定方法证明三角形全等 3 会用尺规作一个角等于已知角 了解作图的道理 学习重点 构建三角形全等条件的探索思路 边边边 判定方法 课件说明 A A AB A B 已知 ABC A B C 找出其中相等的边与角 思考满足这六个条件可以保证 ABC A B C 吗 创设情境 导入新知 B B BC B C C C AC A C 追问1当满足一个条件时 ABC与 A B C 全等吗 动脑思考 分类辨析 思考如果只满足这些条件中的一部分 那么能保证 ABC A B C 吗 思考如果只满足这些条件中的一部分 那么能保证 ABC A B C 吗 两个条件 追问2当满足两个条件时 ABC与 A B C 全等吗 动脑思考 分类辨析 思考如果只满足这些条件中的一部分 那么能保证 ABC A B C 吗 三个条件 追问3当满足三个条件时 ABC与 A B C 全等吗 满足三个条件时 又分为几种情况呢 动脑思考 分类辨析 画法 1 画线段B C BC 2 分别以B C 为圆心 BA BC为半径画弧 两弧交于点A 3 连接线段A B A 动手操作 验证猜想 先任意画出一个 ABC 再画出一个 A B C 使A B AB B C BC A C AC 把画好的 A B C 剪下 放到 ABC上 它们全等吗 边边边公理 三边对应相等的两个三角形全等 简写为 边边边 或 SSS 动脑思考 得出结论 思考作图的结果反映了什么规律 你能用文字语言和符号语言概括吗 在 ABC与 A B C 中 ABC A B C SSS 判断两个三角形全等的推理过程 叫做证明三角形全等 用符号语言表达 动脑思考 得出结论 证明 D是BC中点 BD DC 在 ABD与 ACD中 ABD ACD SSS 应用所学 例题解析 例如图 有一个三角形钢架 AB AC AD是连接点A与BC中点D的支架 求证 ABD ACD 作法 1 以点O为圆心 任意长为半径画弧 分别交OA OB于点C D 已知 AOB 求作 A O B AOB 用尺规作一个角等于已知角 应用所学 例题解析 O D B C A 作法 2 画一条射线O A 以点O 为圆心 OC长为半径画弧 交O A 于点C 已知 AOB 求作 A O B AOB 用尺规作一个角等于已知角 应用所学 例题解析 O C A O D B C A 作法 3 以点C 为圆心 CD长为半径画弧 与第2步中所画的弧交于点D 已知 AOB 求作 A O B AOB 用尺规作一个角等于已知角 应用所学 例题解析 O D C A O D B C A 作法 4 过点D 画射线O B 则 A O B AOB 已知 AOB 求作 A O B AOB 用尺规作一个角等于已知角 应用所学 例题解析 O D B C A O D B C A 作法 1 以点O为圆心 任意长为半径画弧 分别交OA OB于点C D 2 画一条射线O A 以点O 为圆心 OC长为半径画弧 交O A 于点C 3 以点C 为圆心 CD长为半径画弧 与第2步中所画的弧交于点D 4 过点D 画射线O B 则 A O B AOB 已知 AOB 求作 A O B AOB 用尺规作一个角等于已知角 应用所学 例题解析 课堂小结 1 三角形全等的判定至少需要三个条件 2 三角形全等判定的第一个公理是 边边边 3 能用尺规作图法作一个角等于已知角 4 证明三角形全等的书写格式可分为三部分 第一部分是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东电工考试题及答案
- 等高线测试题及答案
- 导弹飞行试题及答案
- 平面构成考试题及答案
- 北京知识培训课件
- 2025年份河南事业单位选调公务员遴选考试笔试试题(含答案)
- 动脉穿刺、深静脉穿刺技术试题(附答案)
- 2025国家基层糖尿病防治管理指南认证考试题(含答案)
- 2025年广州市水务投资集团有限公司校园招聘考试题库及答案解析
- 护士条例及医疗事故处理条例试题(附答案)
- YY 0054-2010血液透析设备
- LY/T 2383-2014结构用木材强度等级
- GB/T 8017-2012石油产品蒸气压的测定雷德法
- GB/T 528-2009硫化橡胶或热塑性橡胶拉伸应力应变性能的测定
- 中日关系历史
- 2023年江苏省中学生生物学竞赛(奥赛)初赛试题和答案
- DB32-T 3129-2016适合机械化作业的单体钢架塑料大棚 技术规范-(高清现行)
- 中西医结合肿瘤医院员工手册
- GB∕T 12703.2-2021 纺织品 静电性能试验方法 第2部分:手动摩擦法
- 某某食堂改造施工组织设计
- 员工培训课程表
评论
0/150
提交评论