单管放大电路的设计.doc_第1页
单管放大电路的设计.doc_第2页
单管放大电路的设计.doc_第3页
单管放大电路的设计.doc_第4页
单管放大电路的设计.doc_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2章 单管放大电路的设计2.1 单管放大电路方案设计2.1.1 工作原理 晶体管放大器中广泛应用如图 1.1.1 所示的电路,称之为阻容耦合共射极放大器。它采用的 是分压式电流负反馈偏置电路。放大器的静态工作点Q主要由RB1、RB2、RE、RC及电源电压+VCC所决定。该电路利用电阻RB1、RB2的分压固定基极电位VBQ。如果满足条件I1IBQ,当温度升高时,ICQVEQVBEIBQICQ,结果抑制了ICQ的变化,从而获得稳定的静态工作点.图2.1.1 阻容耦合共射极放大器2.1.2 静态工作情况:放大器接通电源后,当所输入交流信号为零时,则放大电路中只有直流电源作用,电路中的电压和电流都是直流量,此时的工作状态称为直流工作状态或静态。晶体管各极电流与各极之间的电压分别用IBQ、ICQ和UBEQ、UCEQ四个直流参数表示。它们代表着放大器的输入、输出特性曲线上的一个点,称它们为放大器的静态工作点,用Q表示.如图2.1.2所示。图2.1.2静态工作点2.1.3 动态工作情况:放大电路接入输入信号ui后的工作状态,称为动态。在动态时,放大电路是在输入电压ui和直流电压Ec的共同作用下工作,因此,电路中既有直流分量,又有交流分量,各极的电流和各极间的电压都在静态值的基础上叠加一个随输入信号作相应变化的交流分量。如图2.1.3所示。图2.1.3 信号的动态变化由图2.1.3可得到以下结论:(a)在适当的静态工作点和输入信号幅值足够小的条件下(使晶体管工作在特性曲线的线性区),晶体管各极的电流(IB、IC)和各极间的压(uBE、uCE)都是由两个分量线性叠加而成的脉动量,其中一个是由直流电源EC引起的直流分量,另一个是随输入信号ui 而变化的交流分量。(b)当输入信号ui是正弦波时,电路中的各交流分量都是与输入 信号 ui 同频率的正弦波,其中 ube、ib、ic、与 ui同相,而uce、uo与ui反相。输出电压与输入电压相位相反,是共发射极放大器的一个重要特性。(c)输出电压uo与输入电压ui不但是同频率的正弦波,而且uo的幅度比ui的幅度大的多,由此说明,ui 经过电路后被线性放大了。从图3中还可以看出,只有输出信号的交流分量才能反映输入信号的变化。因此,放大器的放大作用,只是指输出信号的交流分量与输入信号的关系,并不包含直流分量。 2.1.4 放大电路的非线性失真:信号通过放大器后,如果输出信号的波形与输入信号的波形不完全一致,则称为波形失真。由于晶体管特性曲线的非线性所引起的波形失真称为非线性失真。产生非线性失真的原因与放大器静态工作点选择的是否合适有关。如图2.1.4a所示,由于静态工作点选择恰当,输入电压的正负半周在放大过程中得到了同等的放大。图2.1.4a 静态工作点Q、和iB、iC、uCE的波形如果静态工作点选择不当,而输入信号ui的幅度又较大,使得放大器的工作范围超出了晶体管特性曲线的线性区,就会产生波形失真。在放大电路中常见的失真有以下四种:1)由于输入特性曲线的非线性引起的失真;如图2.1.4b所示,静态工作点Q选择在输入特性曲线的较低位置,而输入信号ui的幅度又较大,因此工作点Q在晶体管输入特性曲线上非线性显著的线段上移动,虽然输入信号ui是正弦波,但ib 却是一个正负半周不对称的失真了的波形,如图中阴影所示,这样就导致了放大器输出信号的失真。图2.1.4b 输入特性曲线的非线性引起的失真2)由于输出特性曲线的间隔不均匀引起的失真; 图2.1.4c是一个N P N型晶体管的输出特性曲线,由于特性曲线的间距不均匀,因此各点的 值不相等。此时,虽然ib是不失真的正弦波,但放大电路的输出波形也会失真。假设IBQ=30A,ib=20sint (A),因此,iB在50A到10A之间变化,工作点在Q1与Q2之间移动,从图6中可以看出,Q点到Q1点间的值大于Q点到Q2点间的值,这样,ib的正负半周就得到了不同程度的放大,结果造成了输出电压波形的失真,如图2.1.4c中阴影所示。 图2.1.4c输出特性曲线的间隔不均匀引起的失真 图2.1.4d 饱和失真3) 饱和失真当静态工作点Q的位置偏高,接近输出特性曲线的饱和区时,若输入电压ui的幅度较大,则在ui正半周的部分时间内,晶体管进入饱和区工作,此时ib可能不失真,如图2.1.4d所示,当ib沿正半周方向增大时,工作点从Q点移动到Q1,进入了饱和区。在饱和区内,值很小,且不存在ic=ib的关系。因此,虽然ib继续增大,但ic却不增加,结果ic的正半周出现了平顶,相应地uce(uo)的负半周也出现了平顶。以后,随着ib的减少,工作点又退回到放大区内,ic与ib又恢复了ic=ib的正比关系。这种由于放大电路的工作点在部分时间内进入饱和区而引起的波形失真称为饱和失真。4)截止失真图2.1.4e 截止失真如图1.4.5(a)所示,当静态偏置电流IBQ很小时,静态工作点Q的位置偏低,接近输入特性曲线的截止区,因此在输入电压ui的幅度较大时,在ui进入负半周的部分时间内出现uBE小于发射结导通电压的情况,此时iB=0,晶体管在截止区工作,ib的负半周出现了平顶。对应到晶体管的输出特性曲线上,如图2.1.4e(b)所示,此时工作点移到Q1点后的一段时间内,ib、ic、uce(uo)不随ui而变化,ib和ic的负半周出现了平顶,uce(uo)的正半周出现了平顶。这种由于晶体管进入截止区而引起的失真称为截止失真。 由以上分析,可以看出静态工作点设置不当和输入电压幅值较大是引起非线性失真的根本原因。因此,只要适当地调整静态工作点的位置使它与输入电压的幅值相适应,做到在放大过程中晶体管不进入饱和或截止状态,就可以减少或避免非线性失真。例如,要消除截止失真,就必须提高静态工作点Q的位置,使IBQ ibm。这样在放大过程中工作点就不会进入截止区,这可以通过减小Rb1的值来达到。如果要消除饱和失真,可以通过增大Rb1的值 使Q点适当地离开饱和区,也可以减小Rc的值 使晶体管离开饱和区。如图2.1.4e(b)所示,当Rc减小时,直流负载线和交流负载线都变陡。由于直流负载线变陡(图2.1.4(b)中虚线)而IBQ不变,静态工作点便由Q点移到QA点。从图中可以看出,当同样的ib作用时,工作点在Q点与Q点之间移动,放大器工作在放大区内,从而避免了饱和失真。另外在静态工作点确定后,适当地减小输入电压的幅值,也可以避免波形失真。2.2参数计算与元件选择:1)直流参数共发射极放大器的直流参数主要有IBQ、ICQ及UCEQ、UBEQ。如图2.1.1电路所示,这些直流参数的关系式如下:UEQ = UBQ -UBEQ UBQ = EC Rb2 / ( Rb1+Rb2 ) ICQ = bIBQ = UEQ /Re (2.2.1) UCEQ = EC -ICQRC - UEQ EC - ICQRC - UBQ将已知的EC 、Rb1、Rb2 、Rc 、Re 及b值代入(1),即可算出IBQ、ICQ及UCEQ三个直流参数。2)交流参数共发射极放大器的交流参数主要有电压放大倍数Auo、输入电阻Ri与输出电阻Ro、最大输出电压幅度Uom等: 1) 电压放大倍数Auo: (2.2.2) 式中负号表示输出电压与输入电压的相位是相反的。其中RL= Rc / RL ,rbe称为三极管的动态输入电阻: (2.2.3) 3)元件的选择:通过万用表直接测得=75。由于要求Ri=rbe=300+(1+)26mv/IEQ mA2k所以,ICQ (26/(2000-0)mA=1.14mA,取ICQ0.9mA, IBQ=ICQ/ 12A,I1=(510) IBQ=120A,若取.25 ,3,则/ ICQ3.33若我们把取3.3K,RB2=VBE/I1=(VBE+VEQ)/I1=31 K,取33 K,R(VV)/89,用2.2的电阻与100 K的电位器串连(实验结束时,应测量电位器的具体值)要求Au30.根据,可得R2k,则RC=2.2kCB= CC= 10/2f Rc+RL)=10FC/2f(R/Rrbe+RS/1)100uf.第3章、实验仿真与调试3.1 EWB仿真图:按照图3.1.1电路给出的元件值和电路图接线一个单级放大器。图3.1.1静态工作点的测量接线图如下:图3.1.2 由图3.1.2可读出:UBQ=3.794V 图2.1.3 图2.1.4 由图3.1.3可读出:UEQ=3.099V 由图3.1.4可知UCEQ=7.969V 图3.1.5输入Ui为1KHz,10mv,改变R使U2=Ui/2,测得Ri=R=2.7K图3.1.6图3.1.7在波形不失真的情况下(如图16所示),测得RO=2.18K图3.1.83.2 电路的调试过程与方法按照图3.2.1分压式共射极偏置放大器电路图以及所给出的元件值安装 一个单级放大器。图3.2.1 分压式共射极偏置放大器 1)静态工作点的测量与调整:静态点由管子的IBQ、ICQ、UCEQ、UBEQ 确定,IBQ很小(mA数量级)一般不测它。测量步骤: a)不接输入信号,调节直流电源至选定的直流电压EC,接通电源。 b)检查放大器各级电压判断其是否正常工作;用万用表的直流电压档测量图18中c对地与图17 分压式共射极偏置放大器电路图e对地的电压,如果UCQ = EC或UEQ = 0则说明ICQ = 0,晶体管工作在截止区;如果UCQ太小,例如UCQUEQ = UCEQ 0.5V,则说明ICQ太大,使Rc上压降过大,晶体管工作在饱和区。直接测量图9中b对e的电压,对硅管来说正常的UBEQ值约为0.7V,锗管的值为0.2V。当各极电压都处在正常值时,说明晶体管工作正常。 c)调整工作点:用万用表的直流电压档测量UEQ,若测出的UEQ不等于2.4V,说明静态工作电流ICQ不等于1.0mA,由于ICQ = bIBQ = UEQ / Re,因此可调节电位器RW的大小来改变IBQ的值,使UEQ等于2.4V,此时由: 可计算出ICQ的值。从而达到调整静态工作点电流ICQ及电压UCEQ的目的。当调整好静态工作点后,再测量各直流电压值,将测量结果填入表3.2.1中。表3.2.1 各直流电压值项目UEQ(V)UBEQ(V)UCQ(V)UCEQ(V)ICQ = UEQ / Re测量数据2.80.710.17.30.85mA2)性能指标的测试:按照图2.2.2所示框图连接测量系统。用示波器用来观测放大器的输入、输出电压波形,用晶体管毫伏表用来测量放大器的输入、输出电压。 图3.2.2 测量系统接线图(1)测量电压放大倍数Auo:调节信号发生器,使输出频率f = 1000Hz,Ui =10mV,用毫伏表测量Uo,并记入表2中。表3.2.2 Au的测量Ui UoAuo = Uo / Ui9.99mV 333.1mv33.1(2)输入电阻和输出电阻的测试:a)测量输入电阻Ri放大器的输入电阻反映了它消耗输入信号源的功率的大小。若Ri Rs(信号源内阻),放大器从信号源获取较大电压;若Ri Rs,放大器从信号源吸取较大电流;若Ri = Rs,放大器从信号源获取最大功率。 Ri = rbe / Rb1 / Rb2 rbe用“串联电阻法”测量放大器的输入电阻Ri ,在信号源的输出端与放大器的输入端之间,串联一个已知电阻R(R值的数量级应接近于Ri 的值),如图20所示。在输出波形不失真的情况下,用晶体管毫伏表或示波器分别测量出Us与Ui 的值,则 (3.2.1) 式中,Us 信号源的输出电压如表2.2.3 表3.2.3Us UiRi=UiR/(Us-Ui) 5.5mV 3mV 2.76 Kb)测量输出电阻Ro放大器输出电阻的大小反映了它带负载的能力,Ro愈小,带负载能力愈强。当Ro RL时,放大器可等效成一个恒压源。放大器输出电阻的测量方法如图21所示,电阻RL的值应接近于Ro。在输出波形不失真的情况下,首先测量未接入RL之前(即放大器负载开路时)的输出电压Uo值;然后接入RL再测量放大器负载上的电压UoL值,则 (3.2.2) Uo Uol Ro180 mV 86mV 2.18K 图3.2.3 输入电阻的测量 图3.2.4 输出电阻的测量3)观察由于静态工作点选择不合理而引起的输出波形失真:将频率f = 1000Hz,Ui =10mV的信号接入放大器后:(1)将RW的阻值调到最大,观察输出波形是否失真(若失真不明显,可增大ui)描下失真波形和测量此时的静态工作点电流ICQ。并说明该波形属于什么失真波形?(2)将RW的阻值调到最小,观察输出波形是否失真(若波形为一直线,可增大RW),描下失真波形和测量此时静态工作点电流ICQ。并说明该波形属于什么失真波形?将所观察到的波形与ICQ的测量值记入表2.2.4中。表2.2.4 失真波形与 ICQ工作点Q的变化截止时ICQ = UE Q/ Re =0.43饱和时ICQ = UEQ / Re=1.17输出波形 2.3 误差分析与解决方法a)BJT参数IBCO,VBE,随温度变化对Q点的影响,都表现在使Q点电流Ic增加,可在两方面使Ic维持稳定:(1)针对ICBO的影响,可设法使基极电流IB随温度的升高而自动减小。(2)针对VBE的影响,可设法使发射结的外加电压随着温度的增加而自

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论