



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
古典概型教学目标:(1)进一步掌握古典概型的计算公式;(2)能运用古典概型的知识解决一些实际问题;教学重点、难点:古典概型中计算比较复杂的背景问题教学过程:一、问题情境问题:从甲、乙、丙三人中任选两名代表,求甲被选的概率?二、数学运用(枚举法算等可能事件的个数)例1、将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?说明:也可以利用图表来数基本事件的个数.解:()将骰子抛掷次,它出现的点数有这6中结果。先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又都有6种可能的结果,于是一共有种不同的结果;(2)第1次抛掷,向上的点数为这6个数中的某一个,第2次抛掷时都可以有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有种不同的结果(3)记“向上点数和为3的倍数”为事件,则事件的结果有种,因为抛两次得到的36中结果是等可能出现的,所以所求的概率为答:先后抛掷2次,共有36种不同的结果;点数的和是3的倍数的结果有种;点数和是的倍数的概率为;说明:也可以利用图表来数基本事件的个数:例2、用不同的颜色给3个矩形随机的涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率说明:画图枚举法:(树形图)分析:本题中基本事件比较多,为了更清楚地枚举出所有的基本事件,可以画图枚举如下:(树形图)解:基本事件共有个;(1)记事件 “3个矩形涂同一种颜色”,由上图可以知道事件包含的基本事件有个,故(2)记事件“3个矩形颜色都不同”,由上图可以知道事件包含的基本事件有个,故答:3个矩形颜色都相同的概率为;3个矩形颜色都不同的概率为说明:古典概型解题步骤:(1)阅读题目,搜集信息;(2)判断是否是等可能事件,并用字母表示事件;(3)求出基本事件总数和事件所包含的结果数;(4)用公式求出概率并下结论.例3、一个各面都涂有色彩的正方体,被锯成个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率。解:在个小正方体中,一面图有色彩的有个,两面图有色彩的有个,三面图有色彩的有个,一面图有色彩的概率为;两面涂有色彩的概率为;有三面涂有色彩的概率.答:一面图有色彩的概率;两面涂有色彩的概率为;有三面涂有色彩的概率.例4、现有一批产品共有10件,其中8件正品,2件次品。(1)如果从中取出1件,然后放回再任取1件,求连续2次两次取出的都是正品的概率;(2)如果从中一次取2件,求两件都是正品的概率。解:(1)82/102=0.64;(2)87/109=28/45三、课堂练习:(1)课本第98页第8、13、14题。(2)同时抛掷两个骰子,计算:向上的点数相同的概率;向上的点数之积为偶数的概率(3)据调查,10000名驾驶员在开车时约有5000名系安全带,如果从中随意的抽查一名驾驶员有无系安全带的情况,系安全带的概率是()a25% b35% c50% d75%(4)在20瓶饮料中,有2瓶是过了保质期的,从中任取瓶,恰为过保质期
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 蓝莓原浆采购合同范本
- 车主满意计划协议
- 工地沙石供应合同范本
- 物资采购合同范本
- 蛔虫性肠梗阻驱虫治疗护理查房
- 高速电机出售合同范本
- alc板材安装合同范本
- 卤货店加盟合同范本
- 企业劳动劳务合同范本
- 进口食品联营合同范本
- 2023年航空职业技能鉴定考试-候机楼服务技能考试题库(含答案)
- 医院腹腔镜手术知情同意书
- p型半导体和n型半导体课件
- GB/T 748-2005抗硫酸盐硅酸盐水泥
- GB/T 28287-2012足部防护鞋防滑性测试方法
- 芜湖宜盛置业发展有限公司招聘3名编外工作人员(必考题)模拟卷
- 走好群众路线-做好群众工作(黄相怀)课件
- 混凝土结构设计原理教学教案
- 民间文学(全套课件)
- 专升本00465心理卫生与心理辅导历年试题题库(考试必备)
- 既有重载铁路无缝线路改造及运维技术探索
评论
0/150
提交评论