




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ks5u精品课件 2 2 3向量数乘运算及其几何意义 ks5u精品课件 问题提出 1 如何求作两个非零向量的和向量 差向量 2 相同的几个数相加可以转化为数乘运算 如3 3 3 3 3 5 3 15 那么相等的几个向量相加是否也能转化为数乘运算呢 这需要从理论上进行探究 ks5u精品课件 探究一 向量的数乘运算及其几何意义 思考1 已知非零向量a 如何求作向量a a a和 a a a a a a a a a ks5u精品课件 思考2 向量a a a和 a a a 分别如何简化其表示形式 a a a记为3a a a a 记为 3a 思考3 向量3a和 3a与向量a的大小和方向有什么关系 ks5u精品课件 思考4 设a为非零向量 那么a和a还是向量吗 它们分别与向量a有什么关系 ks5u精品课件 思考5 一般地 我们规定 实数 与向量a的积是一个向量 这种运算叫做向量的数乘 记作 a 该向量的长度与方向与向量a有什么关系 1 a a 2 0时 a与a方向相同 0时 a与a方向相反 0时 a 0 ks5u精品课件 思考6 如图 设点M为 ABC的重心 D为BC的中点 那么向量与 与分别有什么关系 ks5u精品课件 探究二 向量的数乘运算性质 思考1 你认为 2 5a 2a 2b a可分别转化为什么运算 2 5a 10a 2a 2b 2 a b 3 a 3a a ks5u精品课件 思考2 一般地 设 为实数 则 a a a b 分别等于什么 a a a a a a b a b ks5u精品课件 思考3 对于向量a a 0 和b 若存在实数 使b a 则向量a与b的方向有什么关系 思考4 若向量a a 0 与b共线 则一定存在实数 使b a成立吗 思考5 综上可得向量共线定理 向量a a 0 与b共线 当且仅当有唯一一个实数 使b a 若a 0 上述定理成立吗 ks5u精品课件 思考6 若存在实数 使 则A B C三点的位置关系如何 ks5u精品课件 思考8 向量的加 减 数乘运算统称为向量的线性运算 对于任意向量a b 以及任意实数 x y xa yb 可转化为什么运算 xa yb xa yb ks5u精品课件 理论迁移 例1计算 1 3 4a 2 3 a b 2 a b a 3 2a 3b c 3a 2b c ks5u精品课件 例2如图 已知任意两个非零向量a b 试作 a b a 2b a 3b 你能判断A B C三点之间的位置关系吗 为什么 ks5u精品课件 例3如图 平行四边形ABCD的两条对角线相交于点M 且 a b 试用a b表示向量 ks5u精品课件 小结作业 1 实数与向量可以相乘 其积仍是向量 但实数与向量不能相加 相减 实数除以向量没有意义 向量除以非零实数就是数乘向量 2 若 a 0 则可能有 0 也可能有a 0 3 向量的数乘运算律 不是规定 而是可以证明的结论 向量共线定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全培训效果跟踪表课件
- IDO1-TDO-IN-9-生命科学试剂-MCE
- Ho-peg2-ch2-6-Cl-2-2-6-Chlorohexyl-oxy-ethoxy-ethan-1-ol-生命科学试剂-MCE
- GW856464-生命科学试剂-MCE
- 2025江苏连云港市赣榆农业发展集团有限公司及下属子公司招聘设备工程师岗(A36)技能考前自测高频考点模拟试题及完整答案详解一套
- GPR183-inverse-agonist-1-生命科学试剂-MCE
- Glutathione-sulfinate-CoA-Glutathione-sulfinate-coenzyme-A-生命科学试剂-MCE
- 2025年新型船用气象仪器合作协议书
- 创新科技在金融服务中的应用前景
- 2025广西百色靖西市消防救援大队政府专职消防员招聘20人考前自测高频考点模拟试题及答案详解参考
- 高校实验室安全基础课(实验室准入教育)学习通网课章节测试答案
- E190飞机舱门开关
- 儿科学腹泻病
- CT介入学及CT引导下肺穿活检术课件
- GB/T 3871.9-2006农业拖拉机试验规程第9部分:牵引功率试验
- GB/T 3836.4-2021爆炸性环境第4部分:由本质安全型“i”保护的设备
- GB 17840-1999防弹玻璃
- 文学鉴赏-课件
- 小军师面试万能绝杀模板-组织管理
- midasCivil斜拉桥分析课件
- 应急响应程序流程图
评论
0/150
提交评论