


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数系的扩充1 教材内容分析1.1 本质、地位及作用复数的引入实现了中学阶段数系的最后一次扩充但是,复数的进化是数学史中比较奇特的一章,那就是它完全没有按照教科书所描述的逻辑连续性数学与测量或实用计算之间的关系使实数具有某种实在感可是,复数的情形却不一样谁也不知道复数会带来怎样的实际用途,这是在崭新的方向上走出的一步,提出了纯理论的创造新课程中复数内容突出复数的代数表示与代数运算,同时也强调了复数的几何表示与几何意义它的内容是分层设计的:先将复数看成是有序实数对,然后学习复数代数形式的四则运算,再把复数看成是直角坐标系下平面上的点,或把复数看成是从直角坐标系原点出发到平面上一点的向量,最后介绍复数代数形式的加、减运算的几何意义同时,复数作为一种新的数学语言,也为我们今后用代数的方法解决几何问题提供了新的工具和方法,体现了数形结合思想本节课的学习,一方面让学生回忆、归纳数的概念的发展和数系扩充的过程,感悟数的概念产生于实际需求与数学内部的矛盾,感受人类理性思维的作用以及数与现实世界的联系,体会学习新知的必要性和合理性另一方面,让学生理解复数的有关概念,掌握复数相等的充要条件,为今后的学习奠定基础因此,本节课具有承前启后的作用,是本章的重点内容1.2 教学重点难点根据教学内容分析及学生已有的认知基础,本节课的教学重点、难点确定为:重点:感受数系扩充的过程,理解复数的有关概念,掌握复数相等的充要条件难点:数系扩充的过程与原则2 教学目标分析遵循新课标,本节课的教学目标确定如下:2.1 知识与技能理解复数的概念及复数的代数表示,掌握复数相等的充要条件2.2 过程与方法让学生回忆、归纳数系扩充的过程,感悟数系扩充的基本方法,领悟复数的有关理论2.3 情感、态度与价值观通过问题情境感受虚数引入的必要性,体会人类理性思维的作用,形成学习数学知识的积极态度3 教学问题诊断分析结合本节教学内容,教师通过了解数系的扩充历史以及人类对数的认知过程,虚数单位i的引入是纯理论的创造,就连数学家对i的接受也是一个漫长的过程如笛卡尔就不想与这些数发生任何关系,并造出了“虚数”这个名称莱布尼兹的说法最有代表性:“,介于存在与不存在之间的两栖物,”欧拉说:“,想象的数,它们纯属虚幻” 根据历史相似性原理,结合学生已有的认知基础,预测学生在学习本节内容可能产生的认知障碍与学习困难:为什么要引入i?如何引入?i是什么?根据教与学的关系,教师的教要符合学生的认知规律和心理特征;反之,学生的学可以促进教师的教与学教师通过研究学习数系的扩充历史,了解数系扩充的原则与方法,从而为虚数单位i的引入奠定理论基础;虚数的引入虽然最先由于数学本身的需要,但也只有当高斯画出x轴,y轴,用表示一个向量的时候,复数在解决实际问题中才得到广泛的应用,渐渐地才被大家接受因此,i是人类理性思维的产物,是一种创造,一种创新4 教法特点结合以上教学问题诊断分析,本节课的教法主要采用问题驱动教学模式通过设置问题串,让学生形成认知冲突;通过设置问题串,引领学生追溯历史,提炼数系扩充的原则;通过设置问题串,帮助学生合乎情理的建立新的认知结构,让数学理论自然诞生在学生的思想中,教师仅起到“助产士”的作用5 课堂预期效果分析5.1 体现数学的文化内涵本节课教者从学生已有的知识基础出发,再现历史上数学家卡当的问题,让学生经历与数学大师一起发现问题、思考问题、解决问题的过程,感受到数学家就在自己的身边,数学大师并不神秘,他们也曾有解不开的难题,小小的“i”硬是经过了两个世纪的努力才被人接受;数学发现并不神秘,大师们通常是在别人习以为常的现象中发现新问题并穷追不舍;数学并不神秘,只要我们“更新观念”,跳出原有的旧框框,一片更为广阔的数学天地便尽收眼底数学的文化内涵在历史的脉络中体现的淋漓至尽,学生感受的是浓浓的数学文化气息5.2 加深对数学思想方法的理解学生在理解、把握数学知识中,不仅仅是记忆形式上的数学知识,更重要的是领会以数学知识为载体的数学思想方法等通过对数的发展历史的研究,可以把握数学知识、思想、方法的来龙去脉从实数系到复数系,如何扩充的?扩充的原则是什么?教者通过设计问题串,引领学生追溯数的发展历史,类比前几次数系的扩充,让学生在知识发生过程中进行“火热的思考”,实现“再创造”,抽象概括出数系扩充的原则5.3 架起感性认识到理性认识的桥梁从虚数的“生长”过程来看,即使是数学家的认识也是逐步深入的这是数学家几代人共同努力的产物:是一个从无到有、从疑惑到接受、从模糊到清晰、从片面到完善的过程只有学生亲身“经历”这一历史过程,才能体验到数学家的创造过程;才能感知到数学家的认知过程;才能感悟到数学家的思维过程只有学生亲身“经历”这一历史过程,才能消除学生对虚数的疑惑:“虚数是什么?为什么要引入?怎么引入?引入后有什么用?”只有学生亲身“经历”这一历史过程,才能感受到虚数不是神秘莫测、绝对权威的,是一种创造5.4 培养学生科学品质和创新精神复数的产生和发展是数学家们辛勤耕耘的结果,是思想观念的突破它体现了数学家的科学品质和创新精神象这样的方程没有实数解在学生心目中已成定论,既然没有实数解,为什么还要讨论它?既然负数不能开平方,又为什么要承认是有意义的?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生产力和生产关系新质生产力
- 新护士岗前培训心得体会模版
- 科室护理工作汇报材料
- 银行营销面试题目及答案
- 银行内聘面试题目及答案
- 医院消防试题知识及答案
- 一级消防工程师模拟试题及答案
- 湿疹的护理常规
- 跨国度假紧急医疗援助服务补充协议
- 全球化市场拓展人员招聘与派遣合同
- (五调)武汉市2025届高三年级五月模拟训练生物试卷(含答案)
- 2023北京初三一模数学试题汇编:代数综合(第26题)
- 毕业设计产品包装设计
- 2025-2030年中国服务器行业市场深度调研及前景趋势与投资研究报告
- 安徽卷-2025届高考化学全真模拟卷
- 河北省石家庄市2025届普通高中高三教学质量检测(三)英语试卷及答案
- 江西省丰城市第九中学2024-2025学年高二下学期期中考试英语试卷(含答案无听力原文及音频)
- 康复技术考试试题及答案
- 安全生产月活动查找身边安全隐患人人讲安全个个会应急课件
- 2025年新工人入场安全培训考试试题附完整答案(夺冠)
- 2024年云南省文山州第二人民医院选调工作人员考试真题
评论
0/150
提交评论