解答题专项练习 (3).doc_第1页
解答题专项练习 (3).doc_第2页
解答题专项练习 (3).doc_第3页
解答题专项练习 (3).doc_第4页
解答题专项练习 (3).doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

解答题专项练习1.已知中,角,的对边分别为,且()若,求; ()若,求2.在等差数列中,其前项和为,等比数列的各项均为正数,公比为,且, ()求与;()设数列满足,求的前项和FEDBAPC3.如图,在四棱锥中,底面是正方形,平面, 是中点,为线段上一点.()求证:; ()试确定点在线段上的位置,使/平面,并说明理由. 4.某饮料公司对一名员工进行测试以便确定考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中的3杯为A饮料,另外的2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料。若该员工3杯都选对,测评为优秀;若3杯选对2杯测评为良好;否测评为合格。假设此人对A和B两种饮料没有鉴别能力(1)求此人被评为优秀的概率(2)求此人被评为良好及以上的概率5.已知函数.()若,求曲线在点处的切线方程;()若函数在区间上单调递增,求实数的取值范围6.已知椭圆的左、右焦点分别为, 点是椭圆的一个顶点,是等腰直角三角形()求椭圆的方程;()过点分别作直线,交椭圆于,两点,设两直线的斜率分别为, ,且,证明:直线过定点()解答题答案1.解:()由已知,整理得 3分 因为,所以. 故,解得. 4分 由,且,得. 由,即, 解得. 7分 ()因为,又,所以,解得. 10分 由此得,故为直角三角形,13分2. 解:()设的公差为,因为所以 解得 或(舍), 故 , 8分 ()因为,所以 11分 故3证明()因为平面, 所以 又四边形是正方形, 所以,所以平面, 又平面,所以. 7分 ():设与交于,当为中点, 即时,平面 理由如下:连接,EDCBAFOP因为/平面,平面,平面平面,所以在中,为的中点,所以为中点在中,,分别为,的中点,所以又平面, 平面,故/平面. 14分4. 解:将5不饮料编号为:1,2,3,4,5,编号1,2,3表示A饮料,编号4,5表示B饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(1,2,5),(134),(135),(145),(234),(235),(245),(345)可见共有10种 令D表示此人被评为优秀的事件,E表示此人被评人良好的事件,F表示此人被评为良好及以上的事件。则 (1) (2)5.解:()当时,. , 3分 所以所求切线方程为即 5分 (). 令,得. 7分由于,的变化情况如下表:+00+单调增极大值单调减极小值单调增所以函数的单调递增区间是和. 9分 要使在区间上单调递增,应有 或 , 解得或 又 且, 所以 即实数的取值范围 6.解:()由已知可得 , 所求椭圆方程为 ()若直线的斜率存在,设方程为,依题意设,由 得 则 由已知,所以,即 所以,整理得 故直线的方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论