


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平方差公式 项目设计内容备 注课时第 1 课时课 型新课教具多媒体教学目标知识与能力运用平方差公式分解因式,能说出平方差公式的特点.过程与方法会用提公因式法与平方差公式法分解因式态度与情感培养学生的观察、联想能力。 重点运用平方差公式分解因式,能说出平方差公式的特点.难点培养学生的观察、联想能力,进一步了解换元的思想方法, 并能说出提公因式法在这类因式分解中的作用. 教学手段方法类比法教学过程教师活动学生活动说明或设计意图一、复习引入1、对于等式x2+x = x (x+1):1) 如果从左到右看,是一种什么变形?2) 什么叫因式分解?这种因式分解的方法叫什么?3) 如果从右到左看,是一种什么变形?因式分解把一个多项式化成几个整式的积的形式,叫做因式分解.这种因式分解的方法叫提取公因式法.整式乘法因式分解和整式乘法是两种互为相反的变形.巩固旧知二、导入新课(a+b)(a-b) = a2-b2 a2-b2 =(a+b)(a-b) 两个数的平方差,等于这两个数的和与这两个数的差的积。a2-b2 =(a+b)(a-b) 这就是用平方差公式进行因式分解整式乘法因式分解探索新知三、尝试练习1、因式分解(口答):x2-4=_ 9-t2=_2、下列多项式能用平方差公式因式分解吗? (1)x2+y2 (2)x2-y2(3)-x2+y2 (4)-x2-y2 (x+2)(x-2)(3+t)(3-t)(1)不能 (2)能(3)能 (4)不能四、例题讲解例3. 分解因式:(1) 4x2 9 ; (2) (x+p)2 (x+q)2.分析:(1)4x2 = (2x)2,9=32, 4x2-9 = (2x )2 3 2,(2)a2-b2 =(a+b)(a-b)把(x+p)和(x+q)看成一个整体,分别相当于公式中的a和b。解(1)4x2 9 = (2x)2 3 2 = (2x+3)(2x-3)解:(2)(x+p)2 (x+q)2= (x+p) +(x+q) (x+p) (x+q)例4 . 分解因式:(1)x4-y4; (2) a3b ab.分析:(1)x4-y4可以写成(x2)2-(y2)2的形式,这样就可以利用平方差公式进行因式分解了。解: (1) x4-y4 = (x2+y2)(x2-y2)= (x2+y2)(x+y)(x-y)(2) a3b-ab=ab(a2-1) =ab(a+1)(a-1).注意:分解因式,必须进行到每一个多项式都不能再分解为止.五、巩固练习分解因式:(1)a2-0.04b2; (2)9a2-4b2(3)x2y-4y (4) a4 +16(1)(a+ 0.2b)(a -0.2 b )(2)(3a+2b)(3a-2b)(3)y(x+2)(x-2)(4)(4+ a2)(2+a)(2-a)加深理解六、巩固提高1、分解因式2x38x.2、利用因式分解计算:782-222。七、思维延伸1. 观察下列各式: 3212=8=81; 5232=16=82; 7252=24=83; 把你发现的规律用含n的等式表示出来. 2. 对于任意的自然数n,(n+7)2 (n5)2能被24整除吗? 为什么?开扩思维八、课堂小结通过本节课的学习,需要我们掌握和注意以下三点:1.用平方差公式分解因式的式子的特点:(1)多项式是一个二项式.(2)一项正,一项负.(3)每项都可以化成整式的平方.2.因式分解的步骤是:首先提取公因式,然后考虑用公式法.3.因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福州工商学院《虚拟现实开源系统开发实验》2024-2025学年第一学期期末试卷
- 四川财经职业学院《税收学原理》2024-2025学年第一学期期末试卷
- 思政教材解读课件
- 企业义工活动体系构建与实施
- (2025年标准)厂房交还协议书
- 抢救车物品药品管理规范
- (2025年标准)产业扶贫委托协议书
- 细胞存储流程标准化体系
- (2025年标准)产品合伙协议书
- 脑肿瘤诊疗成功案例分享
- 切削刀具项目实施方案
- 常见行政案件笔录模版
- 手术室甲状腺切除术手术配合护理查房
- 国家电网电力中级职称考试题
- 美国专利法及实务培训-上传课件
- 新版中国电信员工手册
- 2023年中国工商银行软件开发中心春季校园招聘500人笔试模拟试题及答案解析
- D500-D505 2016年合订本防雷与接地图集
- 中国重症加强治疗病房(ICU)建设与管理指南
- 社区矫正法课件
- 后勤保障楼幕墙施工方案新
评论
0/150
提交评论