




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【步步高】(江苏专用)2017版高考数学 专题8 立体几何与空间向量 61 空间角与空间距离的求解 理训练目标(1)会求线面角、二面角;(2)会解决简单的距离问题.训练题型(1)求直线与平面所成的角;(2)求二面角;(3)求距离.解题策略利用定义、性质去“找”所求角,通过解三角形求角的三角函数值,尽量利用特殊三角形求解.1.(2015上海闵行区三模)如图,在底面是边长为a的正方形的四棱锥pabcd中,已知pa平面abcd,且paa,则直线pb与平面pcd所成的角的余弦值为_2(2015邯郸上学期教学质量检测)在正四棱锥pabcd中,pa2,直线pa与平面abcd所成角为60,e为pc的中点,则异面直线pa与be所成的角为_3.如图所示,在三棱锥sabc中,abc是等腰三角形,abbc2a,abc120,sa3a,且sa平面abc,则点a到平面sbc的距离为_4(2015丽水二模)如图,在正方体abcda1b1c1d1中,点m为平面abb1a1的中心,则mc1与平面bb1c1c所成角的正切值为_5如图所示,在三棱锥sabc中,sbc,abc都是等边三角形,且bc1,sa,则二面角sbca的大小为_6.如图,在棱长为1的正方体abcda1b1c1d1中,点p在线段ad1上运动,给出以下命题:异面直线c1p与cb1所成的角为定值;二面角pbc1d的大小为定值;三棱锥dbpc1的体积为定值;异面直线a1p与bc1间的距离为定值其中真命题的个数为_7(2015辽宁沈阳二中月考)如图,在abc中,abc45,点o在ab上,且obocab,po平面abc,dapo,daaopo.(1)求证:pb平面cod;(2)求二面角ocda的余弦值8(2015宁波二模)如图,正四棱锥sabcd中,saab2,e,f,g分别为bc,sc,cd的中点设p为线段fg上任意一点(1)求证:epac;(2)当p为线段fg的中点时,求直线bp与平面efg所成角的余弦值9(2015安徽江南十校上学期期末大联考)如图,四棱锥pabcd中,底面abcd为矩形,pa底面abcd,且pb与底面abcd所成的角为45,e为pb的中点,过a,e,d三点的平面记为,pc与的交点为q.(1)试确定q的位置并证明;(2)求四棱锥pabcd被平面所分成上下两部分的体积之比;(3)若pa2,截面aeqd的面积为3,求平面与平面pcd所成的锐二面角的正切值答案解析1.解析设b到平面pcd的距离为h,直线pb与平面pcd所成的角为,则由等体积法可得aahaaa,ha.又pba,sin ,又(0,),cos .245解析如图,连结ac,bd交于点o,连结oe,op.因为e为pc中点,所以oepa,所以oeb即为异面直线pa与be所成的角因为四棱锥pabcd为正四棱锥,所以po平面abcd,所以ao为pa在平面abcd内的射影,所以pao即为pa与平面abcd所成的角,即pao60.因为pa2,所以oaob1,oe1.所以在直角三角形eob中,oeb45,即异面直线pa与be所成的角为45.3.解析作adcb交cb的延长线于点d,连结sd,如图所示sa平面abc,bc平面abc,sabc.又bcad,saada,sa平面sad,ad平面sad,bc平面sad,又bc平面sbc,平面sbc平面asd,且平面sbc平面asdsd.在平面asd内,过点a作ahsd于点h,则ah平面sbc,ah的长即为点a到平面sbc的距离在rtsad中,sa3a,adabsin 60a.由,得ah,即点a到平面sbc的距离为.4.解析如图,过点m作bb1的垂线,垂足为n,则mn平面bb1c1c,连结nc1,则mc1n为mc1与平面bb1c1c所成的角设正方体的棱长为2a,则mna,nc1a,所以tanmc1n.560解析取bc的中点o,连结so,ao,因为abac,o是bc的中点,所以aobc,同理可证sobc,所以soa是二面角sbca的平面角在aob中,aob90,abo60,ab1,所以ao1sin 60.同理可求so.又sa,所以soa是等边三角形,所以soa60,所以二面角sbca的大小为60.64解析对于,因为在棱长为1的正方体abcda1b1c1d1中,点p在线段ad1上运动,在正方体中有b1c平面abc1d1,而c1p平面abc1d1,所以b1cc1p,所以这两个异面直线所成的角为定值90,故正确;对于,因为二面角pbc1d的实质为平面abc1d1与平面bdc1所成的二面角,而这两个平面为固定不变的平面,所以夹角也为定值,故正确;对于,三棱锥dbpc1的体积还等于三棱锥pdbc1的体积,而dbc1面积一定,又因为pad1,而ad1平面bdc1,所以点a到平面dbc1的距离即为点p到该平面的距离,所以三棱锥的体积为定值,故正确;对于,因为直线a1p和bc1分别位于平面add1a1,平面bcc1b1中,且这两个平面平行,由异面直线间的距离定义及求法,知这两个平面间的距离即为所求的异面直线间的距离,所以这两个异面直线间的距离为定值,故正确7(1)证明因为po平面abc,adpo,ab平面abc,所以poab,daab.又daaopo,所以aod45.因为obab,所以oaab,所以oaob,又aopo,所以obop,所以obp45,即odpb.又pb平面cod,od平面cod,所以pb平面cod.(2)解如图,过a作amdo,垂足为m,过m作mncd于n,连结an,则anm为二面角ocda的平面角设ada,在等腰直角三角形aod中,得ama,在直角三角形cod中,得mna,在直角三角形amn中,得ana,所以cosanm.8(1)证明设ac交bd于o,sabcd为正四棱锥,so底面abcd,bdac,又ac平面abcd,soac,bdsoo,ac平面sbd,e,f,g分别为bc,sc,cd的中点,fgsd,bdeg.又fgegg,sdbdd,平面efg平面bsd,ac平面gef.又pe平面gef,peac.(2)解过b作bhge于h,连结ph,bdac,bdgh,bhac,由(1)知ac平面gef,则bh平面gef.bph就是直线bp与平面efg所成的角在rtbhp中,bh,ph,pb,故cosbph.9解(1)q为pc的中点证明如下:因为adbc,ad平面pbc,bc平面pbc,故ad平面pbc.又由于平面平面pbceq,故adeq,所以bceq.又e为pb的中点,故q为pc的中点(2)如图,连结eq,dq,因为pa底面abcd,所以pb与底面abcd所成的角为pba45.故paab.又因为e为pb的中点,所以peae.因为四边形abcd是矩形,所以adab.又pa底面abcd,ad底面abcd,所以adpa.又paaba,所以ad平面pab,又pe平面pab,所以adpe.又aeada,ae平面,ad平面,故pe平面.设pah,ad2a,设四棱锥pabcd被平面所分成的上下两部分的体积分别为v1和v2,则eqa.又因为ad平面pab,ae平面pab,所以adae.v上pes梯形aeqd(a2a),v下pas底面abcdv上h2ah,所以.(3)过e作efdq,连结pf,因为pe平面,所以pedf.又由于efpee,所以df平面pef,则dfpf.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级英语单词表英译汉
- 河北省怀安县2025年上半年公开招聘村务工作者试题含答案分析
- 河北省馆陶县2025年上半年公开招聘城市协管员试题含答案分析
- 2025年北京二手房买卖合同样本:房屋权属核实
- 2025版货物运输保险合同范本汇编
- 2025版大型购物中心设施维护保养服务合同范本
- 2025版医疗设备维修保养及备件供应合同范本
- 2025版环保产业投资入股合同样本
- 2025版知识产权风险评估与防控联盟协议
- 2025年新能源发电项目电线电缆供应合同范本
- 硬笔书法训练行业深度调研及发展战略咨询报告
- 人教版小学三年级下册数学期末检测试题(含答案)共5套
- 2024年中国心力衰竭诊断与治疗指南更新要点解读
- 医院医保智能审核与规则解释
- 中国三氯吡氧乙酸原药市场现状规模与投资前景方向预测报告2025-2031年
- JJF(新) 146-2024 可燃气体和有毒气体检测报警控制系统校准规范
- 《非权力影响力》课件
- 《高血压的护理常规》课件
- 职业教育产教融合型数字化教材开发研究
- 《更年期的中医调理》课件
- 《环形件模锻实验》课件
评论
0/150
提交评论