2016年高考导数试题及答案(精选).doc_第1页
2016年高考导数试题及答案(精选).doc_第2页
2016年高考导数试题及答案(精选).doc_第3页
2016年高考导数试题及答案(精选).doc_第4页
2016年高考导数试题及答案(精选).doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.(新课标1)已知函数fx=x-2ex+a(x-1)2有两个零点.(I)求a的取值范围;(II)设x1,x2是f(x)的两个零点,证明:x1+x20时, (II)证明:当 时,函数 有最小值.设g(x)的最小值为,求函数 的值域.解:()的定义域为.且仅当时,所以在单调递增,因此当时,所以(II)由(I)知,单调递增,对任意因此,存在唯一使得即,当时,单调递减;当时,单调递增.因此在处取得最小值,最小值为于是,由单调递增所以,由得因为单调递增,对任意存在唯一的使得所以的值域是综上,当时,有,的值域是3. (新课标3)设函数f(x)=acos2x+(a-1)(cosx+1),其中a0,记f(x)的最大值为A.()求f(x);()求A;()证明f(x)2A.解:()()当时,因此,当时,将变形为令,则是在上的最大值,且当时,取得极小值,极小值为令,解得(舍去),()当时,在内无极值点,所以()当时,由,知又,所以综上,()由()得.当时,.当时,所以.当时,所以.4(山东 )已知. (I)讨论的单调性;(II)当时,证明对于任意的成立解()的定义域为;.当, 时,单调递增;,单调递减.当时,.(1),当或时,单调递增;当时,单调递减;(2)时,在内,单调递增;(3)时,当或时,单调递增;当时,单调递减. 综上所述,当时,函数在内单调递增,在内单调递减;当时,在内单调递增,在内单调递减,在内单调递增;当时,在内单调递增;当,在内单调递增,在内单调递减,在内单调递增.()由()知,时,令,.则,由可得,当且仅当时取得等号.又,设,则在单调递减,因为,所以在上存在使得 时,时,所以函数在上单调递增;在上单调递减,由于,因此,当且仅当取得等号,所以,即对于任意的恒成立。5.(天津)设函数,R,其中,R.()求的单调区间;()若存在极值点,且,其中,求证:;()设,函数,求证:在区间上的最大值不小于解:()解:由,可得.下面分两种情况讨论:(1)当时,有恒成立,所以的单调递增区间为.(2)当时,令,解得,或.当变化时,的变化情况如下表:00单调递增极大值单调递减极小值单调递增所以的单调递减区间为,单调递增区间为,.()证明:因为存在极值点,所以由()知,且,由题意,得,即,进而.又,且,由题意及()知,存在唯一实数满足 ,且,因此,所以;()证明:设在区间上的最大值为,表示两数的最大值.下面分三种情况同理:(1)当时,由()知,在区间上单调递减,所以在区间上的取值范围为,因此,所以.(2)当时,由()和()知,所以在区间上的取值范围为,因此.(3)当时,由()和()知,所以在区间上的取值范围为,因此.综上所述,当时,在区间上的最大值不小于.6(江苏) 已知函数f(x)= .(1) 设a=2,b=.求方程=2的根;若对任意,不等式恒成立,求实数m的最大值;(2)若,函数有且只有1个零点,求ab的值.解(1)因为,所以.方程,即,亦即,所以,于是,解得.由条件知.因为对于恒成立,且,所以对于恒成立.而,且,所以,故实数的最大值为4.(2)因为函数只有1个零点,而,所以0是函数的唯一零点.因为,又由知,所以有唯一解.令,则,从而对任意,所以是上的单调增函数,于是当,;当时,.因而函数在上是单调减函数,在上是单调增函数.下证.若,则,于是,又,且函数在以和为端点的闭区间上的图象不间断,所以在和之间存在的零点,记为. 因为,所以,又,所以与“0是函数的唯一零点”矛盾.若,同理可得,在和之间存在的非0的零点,矛盾.因此,.于是,故,所以.7. (四川)设函数f(x)=ax2-a-lnx,其中a R. (I)讨论f(x)的单调性;(II)确定a的所有可能取值,使得f(x)-e1-x+在区间(1,+)内恒成立(e=2.718为自然对数的底数)。解(I) 0,在内单调递减.,由=0,有.此时,当时,0,单调递增.(II)令=,=.则=.而当时,0,所以在区间内单调递增.又由=0,有0,从而当时,0.当,时,=.故当在区间内恒成立时,必有.当时,1.由(I)有,从而,所以此时在区间内不恒成立.当时,令,当时,因此,在区间单调递增.又因为,所以当时, ,即 恒成立.综上,8(浙江)设,函数,其中()求使得等式成立的x的取值范围()(i)求的最小值 (ii)求在上的最大值 解(I)由于,故当时,当时,所以,使得等式成立的的取值范围为(II)(i)设函数,则,所以,由的定义知,即(ii)当时,当时,所以,9(北京)设函数f(x)=xe +bx,曲线y=f(x)d hko (2,f(2)处的切线方程为y=(e-1)x+4,(I)求a,b的值; (I I) 求f(x)的单调区间。解:()因为,所以.依题设,即解得.()由()知.由即知,与同号.令,则.所以,当时,在区间上单调递减;当时,在区间上单调递增.故是在区间上的最小值,从而.综上可知,故的单调递增区间为.10(上海)已知,函数.(1)当时,解不等式;(2)若关于的方程的解集中恰好有一个元素,求的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.解:(1)由,得,解得(2),当时,经检验,满足题意当时,经检验,满足题意当且时,是原方程的解当且仅当,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论