导数在中学数学中的应用-毕业论文.doc_第1页
导数在中学数学中的应用-毕业论文.doc_第2页
导数在中学数学中的应用-毕业论文.doc_第3页
导数在中学数学中的应用-毕业论文.doc_第4页
导数在中学数学中的应用-毕业论文.doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南师范大学新联学院本科毕业论文 学号: 0801174066导数在中学数学中的应用专业名称: 数学与应用数学 年级班别: 08级1班 姓 名: 李松阳 指导教师: 高福根 2012年05月 河南师范大学新联学院本科毕业论文(设计)(小五,宋体,居中,论文、设计二选一)河南师范大学新联学院本科毕业论文导数在中学数学中的应用摘 要 导数具有丰富多彩的性质和特性,利用导数研究或处理中学数学问题,既可以加深对导数的理解,又可以为解决函数问题提供了有利的方法,使得函数问题得到简化,为我们解决函数问题提供了有力的工具,用导数可以解决函数中的极值和最值问题,不等式问题,还可以与解析几何相联系,可以用导数求曲线的切线,判断或论证函数的单调性。因此导数是分析和解决中学数学问题的有效工具。本文就导数的有关知识在中学数学中的应用进行了探讨。阐述了利用导数知识研究函数的单调区间、最值等问题的基本方法,以及导数为解决某些不等式的证明、方程求解和数列求和提供了捷径。同时导数知识在研究曲线的切线方面和解决实际问题中也有着广泛的应用。关键词 导数;函数;切线;不等式;恒等式;数列;方程 Derivative and its application in middle school mathematics Abstract This article focuses on the use of derivatives of the basic knowledge and theory, to solve the middle school mathematics in the function monotone, the function of the value, function and other functions of the image problem, and introduced a derivative of the inequality, identify, the series, and analytic geometry. The application of practical problems. Involved in the text of the main methods of comparison, analysis and synthesis method.Keywords derivative; function; tangent; inequality; identity; series; equation 前 言 导数(导函数的简称)是一个特殊函数,它的引出和定义始终贯穿函数思想. 导数是近代数学的基础,是联系初、高等数学的纽带,它的引入为解决一些中学数学问题提供了新的视野, 是研究函数性质、探求函数的极值最值、求曲线的斜率等等的有力工具1,14-16。本文就导数的应用,谈一点个人的感悟和体会。 导数在中学数学中的应用非常广泛,涉及到中学数学的各个方面。应用导数处理问题不需要很高的思维能力,突出了通法,淡化了技巧。下面分类例析导数在中学数学中的具体应用。1.导数在函数问题中的应用 利用导数分析函数的性态是一种重要手段。在分析函数的图象、判断函数的单调性、求解函数的最值等方面,利用导数可使复杂问题简单化、程序化。1.1 分析函数的图象yox【例1】设函数在定义域内可导,的图象如图所示,则导函数的图象可能是oxyoxyoxyoxy图1.1 A. B. C. D. 解:当时,函数在对应的区间内均为增函数,.时,函数在对应的区间内先增后减再增,先大于0,后小于0,再大于0.由此知图象是D。1.2 求参数的值【例2】函数过曲线上的点p(1, )的切线方程为,若函数在区间2,上单调递增,求b的取值范围2。解: 由求导可得 过上p(1, )的切线方程为: 即,而过上p(1, )的切线方程为 。故有3+2+b=3 即 又 在区间上单调递增,在区间上恒有,即在上恒成立。(1) 当时,所以;(2) 当时, , 所以; (3) 当时,则;综合上述讨论可知,所求参数b的取值范围是:1.3 判断函数的单调性函数的单调性是函数的最基本性质之一,是研究函数所要掌握的最基本的知识。用单调性的定义来处理单调性问题有很强的技巧性,较难掌握好,而用导数知识来判断函数的单调性简便而且快捷,对于基本初等函数的单调性,大家都 比较熟悉,易找到它的单调区间。当我们所讨论的函数是特殊基本初等函数(反比例函数、一次函数、二次函数、指数函数与对数函数、三角函数与反三角函数、幂函数等)时,一般情况可利用它们定义域上的单调性来求解;但对于较复杂的函数的单调性,必须利用复合函数的单调性的结论来进行分析与判定这是一种复杂而又容易出错的运算,而借有导函数来解决函数的单调性会更简明3。单调性,并循“同增异减”的法则来获得,若为比较复杂的复合函数时,利 用导数可化难为易,轻松求解。 利用导数判断函数的单调性的步骤是:(1)确定的定义域;(2)求导数;(3)在函数的定义域内解不等式0和0和0的解为单调增区间,0,得1,所以的单调增区间为和令0,得-10,对xR恒成立,此时只有一个单调区间,矛盾。 若0, =,此时恰有三个单调区间。 令=0得=,= 0且单调减区间为(-,)和(,+),单调增区间为(-,)。 评注:函数的驻点(导函数值等于0的点)和不可导的点(导数不存在的点)可能为函数的单调区间的分界点,分界点的确定取决于点两侧的导数是否异号。1.4 应用导数研究有关方程的根的问题 利用导数,结合根的存在定理及函数的单调性,能巧妙地解决有关方程的根的诸多问题。【例6】若,则方程在上有多少根?解:设,则 当且时,故在上单调递减,而在与处都连续,且,故 在上只有一个根。1.5求函数的极值利用导数求函数极值解答这类问题的方法是:(1)根据求导法则对函数求出导数;(2)令导数等于0,解出= 0的所有实数根;(3)对每个实数根进行检验,判断在每个根(如)的左右侧,导函数的符号如何变化,如果的符号由正变负,则是极大值;如果的符号由负变正,则是极小值。(4)求出极值。【例7】求 的极值。解:令= x(x2) = 0.解方程,得图1.5。如图1.5所示。 x02+0-0+ 由图可知 为极大值;为极小值。注意:如果0的根的左右侧符号不变,则不是极值5。思考题:求 在-1,3内的最大值和最小值。 1.6求函数的最值 最值问题是中学数学中的重点、难点,它涉及到中学数学知识的各个方面,处理此类问题往往需要较高的思维能力和技能,而用导数处理这类问题使得解题过程程序化、简单化。用求导方法求函数的最值问题,是简化用初等方法求最值的最佳手段,因为闭区间上函数的最大值、最小值只能在极值点或端点处取得,这样问题就化成求函数的极值点和各端点处的函数值问题.求值域、最值的方法很多,主要有:定义法、换元法、配方法、判别式法、不等式法、反函数法、三角代换法、数形结合法、单调性法、导数法等等6。导数法通常是利用导数公式及运算法则,并结合函数的单调性来求得,一般来说,此法往往是较简捷的.利用导数求函数求在上的最大(小)值的步骤如下:(1)求出的所有驻点和导数不存在的点;(2)比较的大小,最大的就是在上的最大值,最小的为在上的最小值。在实际问题中,通常遇到的函数大多是某区间内只有一个极值点的连续且可导的函数,因而实际问题中求出函数的极大值、极小值就是最大值或最小值。实际上我们可以不必再花时间去判别。【例8】求函数=在闭区间的最大值和最小值。 解:=, 令=0, 则=-1,=1。 则, , 又 max=2, min=-18。 【例9】如图1.6所示,在二次函数=的图象与x轴所围成图形中有个内接矩形ABCD,求这个矩形面积的最大值。 解:设点B的坐标为(,0)且02, =图象的对称轴为, 图1.6 点C的坐标为(,0), |BC|=, |BA|=。矩形面积为 =令=0,解得, 02, 取。 极值点只有一个,当时,矩形面积的最大值为。在实际应用中,常会遇到求“效益最高”、“用料最省”、“容积最大”、“成本最低”等最优化问题。这类问题在中学数学上就是求最大值与最小值问题。 【例10】传说古代迦太基人建造城镇时,允许居民占有一天犁出一条沟所围成的土地.假定某人一天犁沟的长度为常数,试求: (1)所围土地是矩形,其宽各为多少时面积最大? (2)所围土地是圆形,其面积是否比矩形面积大? 解:(1)设矩形的长为 x,宽为y,周长为面积为S ,则 令解得唯一驻点=. 00,故=为极大值点,所以 .即犁沟围成的矩形土地是正方形时面积最大,最大面积为。 (2)设圆形土地面积为,半径为,则因为,故圆形土地面积比矩形的面积更大.2 导数在不等式证明问题中的应用 解不等式和不等式的证明,是中学数学经常面临的问题,有时我们常遇到的一些不等式,看似很简单,但却无从下手,难以真正找到切入点,利用常用的方法进行尝试,都很难奏效,这时如果变换一下思维角度,我们可以先用导数的方法证明函数的单调性,再用函数单调性的性质去证明不等式,这就是利用单调性证明不等式的思想。从不等式的结构和特点出发,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化,从而使问题迎刃而解7常用的不等式的证明方法有换元法、分析法、综合法、归纳法等基本方法,但对于某些含有对数或指数的超越不等式运用上述方法却无所适从,若采用导数方法证明这些不等式,则会柳暗花明,取得理想的效果,证明不等式彰显导数方法运用的灵活性把要证明的一元不等式通过构造函数转化为0(0)再通过求的最值,实现对不等式证明,导数应用为解决此类问题开辟了新的路子,使过去不等式的证明方法从特殊技巧变为通法,彰显导数方法运用的灵活性、普适性. 用单调性证明不等式的步骤: (1)构造可导函数; (2)确定函数自变量所在的区间; (3)求区间上的单调性; (4)由单调性得到不等式8。 【例11】若x -1,试证明:9。 证明:先证.(1) 即证 , 因为,所以只需证明 构造函数, (1)式转化为在上恒成立。由于 当时; 当=0时,;当0时,;故为在上的最大值故有,即 同理可证 综上原不等式得证。评注:利用导数证明不等式是一种热点题型。其方法可以归纳为“构造函数,利用导数研究函数最值”。利用求导数的方法证明不等式的思路是:首先要根据题意构造函数式,再利用导数判断所设函数的单调性,利用单调性的定义,完成所要证明的不等式10。3 导数在数列问题中的应用 【例12】求数列 1,2x, ,.的前n 项和(,1)11。 分析:这道题可以用错位相减法求和,但若用导数方法运算会使问题更加简明。解:当,1时, ,两边都关于求导得 【例13】当 时,求数列 ,.的前项和11。 解:两边同时求导 得:令,得:4 导数在解析几何问题中的应用导数的几何意义是曲线在该点处切线的斜率,利用导数可以十分便捷地分析、处理有关切线的问题。 求切线方程,并用切线方程解决问题解题要点: (1)在曲线上取一作切点(用一个变量表示点的坐标); (2)切线斜率的两个来源(两点式和求导)12。 【例14】已知曲线=,过点(1,-3)作其切线,求切线方程。 分析:根据导数的几何意义求解。 解:=, 当时=- 3, 即所求切线的斜率为-3. 故所求切线的方程为 , 即为:.评注:函数y=在点处的导数的几何意义,就是曲线y=在点P(,y=)处的切线的斜率。既就是说,曲线y=在点P(,)处的切线的斜率是 ,相应的切线方程为-=。5 导数在实际问题中的应用5.1 容器制造问题 【例15】某工厂准备从边长为2a的正方形铁片的四个角各截一个边长为的正方形,然后折成一个无盖的长方体容器,要求长方体的高度与底面正方形的比不超过正常数t,如图5.1.1所示。求为多少时,容器容积V有最大值13。 解:由已知正方形的边长为,高为, 则 所以, 令,则,或(舍去) 图5.1.1 uuuuggaa5555.1 若,则如图5.1.2讨论如下: + 0 - 由图5.1.2知当时 V取最大值 若 ,即时, , 所以 V在 上是增函数。 所以当时,取得最大值。 综上知:当 且时,容积V取得最大值。 当 且时,容积V取得最大值。 5.2 成本利用问题 【例17】某轮船航行过程中燃料费与速度的立方成正比,已知速度为10千米/小时时,燃料费10元/小时,其他与速度无关的费用每小时180元,问轮船的速度是多少时,每千米航程成本最低? 分析:本题建模的关键是根据题中的比例关系和数据求出比例常数,从而确定航行1千米所需总费用的数字模型,最后利用导数求极值。解:依题设比例关系可知 (k为比例常数)由, 有: 所以,航行1小时费用为:(元),而航行每千米所需时间是小时,所以航行1千米的费用为:求C关于的导数有:令,解得当时, 当时, 所以当时,c有极小值,且方程在内只有一根,故此极小值即为最小值,即千米/小时时,每千米航程成本最低。6 有关导数的综合题 【例25】描绘函数的图形. 解:(1)函数的定义域为, (2)函数不具有奇偶性,因此曲线无对称性. (3)令,即,解得,表明曲线与轴交于和. (4),令,得. (5),.图6.1.1 (6)如图6.1.1讨论如下:x-2(-2,0)0-0+无-3极小值 不存在 作出函数的图像(如图6.1.2) 通过以上各例可知,导数的应用涉及到很多内容,因此在学习导数这部分内容时,不仅要掌握导数的概念、求导公式和求导法则,还要学会导数在函数单调性和最值、曲线的切线等问题上的应用。同时,导数是我们研究中学数学的一个有力工具,它使各个章节的内容联系的更加紧密,有助于我们对中学数学的深入学习。充分发挥导数的工具作用,不仅能揭示题目的本质及内涵,使解题更容易操作,获得淡化复杂问题的技巧和功效,还能培养学生的应用意识、体会解题所蕴含的数学思想方法、开阔视野、丰富解题方法、挖掘潜能,提高学生的解题能力。总之,导数作为一种工具,在解决中学数学问题时使用非常方便,尤其是可以利用导数来解决函数的单调性,极值,最值以及切线问题。在导数的应用过程中,要加强对基础知识的理解,重视数学思想方法的应用,达到优化解题思维,简化解题过程的目的,更在于使学生掌握一种科学的语言和工具,进一步加深对函数的深刻理解和直观认识。参考文献1普通高中课程标准实验教科书(北京师范大学出版社),2003.2郭金芝.导数的应用J.中学生数理化(教与学教研版),2006,(2):38-40. 3周国球.运用导数解题应注意几个方面J.中学数学教学,2006,(1):24-25.4华东师范大学数学系.数学分析M(上册,第三版).北京:高等教育出版社,2001,(6):87-103.5王淑茂,吴永清.例谈导数应用中的几个误区J.数学教学研究,2006,(1):35-36.6孙立群,郭卫东.例析导数在高次函数中的应用J.中学数学研究,2003,(8):36-38.7叶道义应用导数证明不等式J.安徽技术师范学院学报,2003,(4):338-340.8尚肖飞,贾计荣.利用导数证明不等式的若于方法J.太原教育学院学报,2002,(2):3537.9肖志向.例说导数法证明不等式J.中学数学研究,2006,(2):38-39.10高等数学编写组,苏州大学出版社M.苏州:苏州大学出版社,2003.11秦学锋.微积分在数列求和中的应用J.数学通报,2001,(2):36.12陈应昌.导数中的一个重要定理的应用J.高中数学教与学,2006,(2):27-28.13李汉云.导数的基本应用举例J.高中数学教与学,2005,(10):15-17.14Guckenheimer J, Holmes P.Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields M.New York: Springer-Velar,1983.15Arrow smith D K, Place C M. Dynamical, Differential equations, maps and chaotic behavior M.London: Chapman & Hall,1992.16Putter E J .Avoiding the Jordan Canonical form in the Discussion of Linear Systems with Constant Coefficients J.American Mathematical Monthly,1966.致 谢 在我的本科生活即将结束之际,向在此阶段帮助过我的老师朋友同学表达我最衷心的感激,谢谢你们的一路相随。首先我要感谢我的指导老师高福根老师,在论文的写作中,无论是理论上还是实际上,您都给了我最大帮助,使我得到了很大的提高,特别是您的严谨的治学态度给我留下了深刻的印象。其次我要感谢我的同学朋友们,你们给我提出很多宝贵的建议和意见,真的很感谢你们,因为有你们我才不会孤独。李松阳2012年4月于河南师范大学新联学院经典婚庆主持词炮竹声声贺新婚,欢声笑语迎嘉宾.尊敬各位来宾,各位领导,各位亲朋好友,先生们,女士们,活泼可爱的小朋友们,大家好! 好歌好语好季节,好人好梦好姻缘.来宾们今天是公元*年*月*日(农历六月初八)是良辰吉日,在这大吉大利吉祥喜庆的日子里,我们怀着十二分的真诚的祝福相聚在*酒楼一楼婚宴大厅共同庆贺*先生与*小姐新婚典礼.(首先我们给予掌声的恭喜)大家都知道结婚是人生中的一件大事,而婚礼更是人生中最幸福神圣的时刻,尤其婚礼上浪漫温馨高雅别致的婚礼仪式以及亲朋好友的良好祝愿会给新人一生永远带来最美好的回忆.各位亲朋好友,我是本次婚礼庆典的主持人*.今天我十分荣幸地接受新郎新娘的重托,步入这神圣而庄重的婚礼殿堂为新郎*,新娘*的婚礼担任司仪之职.让我们在这里共同见证一对新人人生中最幸福神圣美好的一刻!真是:百鸟朝凤凤求凰,龙凤呈祥喜洋洋.让我们用掌声祝贺他们祝福新人凤凰展翅迎朝晖,恩爱鸳鸯比翼飞.携手同步知心人,共创宏图献真情.郎才女貌天作美,洞房花烛喜成双.在神圣的婚礼进行曲中一对新人手挽手,肩并肩缓缓步入婚礼大厅.脸上充满了无比幸福的笑容让我们用掌声与鲜花给予一对新人最诚挚的祝福.婚姻是人生大事,结婚典礼对青年男女来说是一生中最重要的时刻.你也笑,我也笑,亲朋好友齐来到.天也新,地也新,众星捧月迎新人.新郎新娘台上站,甜蜜感觉涌心间.风风雨雨牵手过,今天喜结美姻缘.亲朋好友齐相聚,欢欢喜喜来贺喜. * * * 天仙配,幸福的生活比蜜甜.在这个激动人心的美好时刻,作为婚庆司仪,首先请允许我代表新郎新娘以及新郎新娘的双方家长,对今天百忙当中来参加婚礼的各位来宾,各位亲朋好友的光临表示最诚挚的谢意和热烈的欢迎(谢谢大家)!欢迎你们!婚礼对每一个新婚的人而言,都是神圣,浪漫,唯美和经典的,随着神圣的婚礼进行曲奏响,英俊的新郎和美丽的新娘在掌声与祝福声中,缓缓的步上红地毯,那是万众瞩目的一瞬,那是梦寐以求的一瞬,那是凝结爱的万语千言的一瞬,那是最激动人心的一瞬,一同迷醉在尘世间最美妙的气氛里.爱情是古老而年轻的话题,也是不朽的人生主题.许多人已经拥有,更多人正在追求,今天

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论