工程力学(下册)05质点动力学的基本方程.ppt_第1页
工程力学(下册)05质点动力学的基本方程.ppt_第2页
工程力学(下册)05质点动力学的基本方程.ppt_第3页
工程力学(下册)05质点动力学的基本方程.ppt_第4页
工程力学(下册)05质点动力学的基本方程.ppt_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第5章质点动力学的基本方程 5 1动力学的基本定律与惯性参考系 5 1 1动力学基本定律 牛顿定律 5 1 2惯性参考系 5 2质点的运动微分方程及其应用 5 2 1质点运动微分方程 5 2 2质点动力学的两类基本问题 5 2 3应用举例 本章习题 5 1动力学的基本定律与惯性参考系 动力学是研究作用在物体上的力与物体运动状态变化之间关系的学科 动力学的研究对象是运动速度远小于光速的宏观物体 属经典力学 动力学是物理学和天文学的基础 也是许多工程学科的基础 动力学的研究以牛顿运动定律为基础 牛顿运动定律的建立则以实验为依据 动力学是牛顿力学 又称经典力学 的一部分 但自20世纪以来 动力学又常被人们理解为侧重于工程技术应用方面的一个力学分支 质点是具有一定质量而几何形状和尺寸大小可以忽略不计的物体 质点是物体最简单 最基础的模型 是构成复杂物体系统的基础 动力学可分为质点动力学和质点系动力学 前者是后者的基础 5 1 1动力学基本定律 牛顿定律 牛顿第一定律 惯性定律 任何物体 如果不受外力作用 包括所受合外力为零的情况 将保持静止或匀速直线运动状态 这是物体的固有属性 称为惯性 这个定律定性地表明了物体受力与运动之间的关系 即力是改变物体运动状态的根本原因 牛顿第二定律 力与加速度之间的关系定律 物体受到外力作用时 所产生的加速度的大小与作用力的大小成正比 而与物体的质量成反比 加速度的方向与力的方向相同 用方程表示为 或 5 1 式中 F为质点所受的力 m为质点的质量 a为质点在力F作用下产生的加速度 该表达式又称质点动力学基本方程 牛顿第三定律 作用与反作用定律 两物体间相互作用的作用力和反作用力 总是大小相等 方向相反 沿着同一直线 这一定律是静力学的公理之一 适用任何受力或任何运动状态的物体 作用与反作用定律对研究质点系动力学问题具有重要意义 因为牛顿第二定律只适用于单个质点 而本章将要研究的问题大多是关于质点系的 牛顿第三定律给出了质点系中各质点间相互作用的关系 从而使质点动力学的理论能推广应用于质点系 5 1 2惯性参考系 动力学基本定律涉及质点的不同运动状态 静止 匀速直线运动和加速运动等运动状态 所给出的结论只有在惯性参考系中才是正确的 在某参考系中 若观测某个所受合外力等于零的质点的运动 如果此质点正好处于静止或匀速直线运动状态 则该参考系称为惯性参考系 5 2质点的运动微分方程及其应用 5 2 1质点运动微分方程 在解决工程实际问题时 常将动力学的基本方程 5 1 改写为其他不同形式 以便应用 1 质点运动微分方程的矢量形式 如图5 1所示 设有质量为m的质点M受到力F1 F2 Fn的作用做曲线运动 合力为FR 用r表示质点的位矢 则质点的运动微分方程为 5 2 应用矢量形式微分方程进行理论分析非常方便 但有时求解某些具体问题时很困难 而且所得到结果的力学意义也不很明显 因此 多数问题的求解仍需根据具体问题选择合适的坐标形式 2 质点运动微分方程的直角坐标形式 由矢量方程 5 2 在图5 1中的直角坐标系上投影 可得到质点的运动微分方程的直角坐标形式 5 3 直角坐标形式的运动微分方程 原则上适用于所有问题 也是最常用的形式 但对某些具体问题仍有不便之处 如质点沿球面或柱面运动时 用直角坐标就不如用球坐标或柱坐标方便 3 质点运动微分方程的自然坐标形式 当质点的运动轨迹已知时 如图5 2所示 在点上建立由切线 主法线 副法线组成的自然坐标系 由点的运动学可知 点的加速度在密切面内 而在副法线上的投影为零 将矢量方程 5 2 投影到自然坐标系上 可得到质点运动微分方程的自然坐标形式 5 4 式中 为质点运动轨迹的曲率半径 为质点的切向加速度 为质点的法向加速度 除了以上几种常见的质点运动微分方程外 根据点的运动特点 还可以应用其他形式 如柱坐标 球坐标 极坐标等 正确分析研究对象的运动特点 选择一组合适的微分方程 会使问题的求解过程大为简化 5 2 2质点动力学的两类基本问题 第一类基本问题 已知质点的运动 求解此质点所受的力 第二类基本问题 已知作用在质点上的力 求解此质点的运动 一般来说 第一类基本问题需用微分和代数方法求解 第二类基本问题需用积分方法求解 对于含有非线性函数的运动微分方程 大多数情况下很难得到解析解 通常只能应用数值方法求解 此外 求解微分方程时将出现积分常数 这些积分常数通常根据质点运动的初始条件 如初始速度和初始位置等 来确定 因此 对于这类问题 除了作用于质点的力外 还必须知道质点运动的初始条件 5 2 3应用举例 例5 1 曲柄连杆机构如图5 3 a 所示 曲柄OA以匀角速度转动 其中OA r AB l 当比较小时 以O为坐标原点 滑块B的运动方程可近似写为 如滑块的质量为m 忽略摩擦及连杆AB的质量 试求当和时 连杆AB所受的力 解 以滑块B为研究对象 当时 受力如图5 3 b 所示 由于不计连杆质量 连杆AB为二力杆 则它对滑块B的力F沿AB方向 写出滑块沿x轴的运动微分方程 由题设的运动方程 可以求得 当时 且 得AB杆受拉力 当时 则有 得AB杆受压力 例5 2 如图5 4所示 小球质量为m 悬挂于长为l的细绳上 绳重不计 小球在铅垂面内摆动时 在最低处的速度为v 摆到最高处时 绳与铅垂线夹角为 此时小球速度为零 试分别计算小球在最低和最高位置时绳的拉力 解 如图5 4所示 由于小球做圆周运动 小球在最低处受重力G mg和绳拉力F1 此时有法向加速度 由质点运动微分方程沿法向的投影式 有 则绳的拉力 小球在最高处角时 受力分析如图5 4所示 由于小球此时速度为零 法向加速度为零 则其运动微分方程沿法向投影式为 则绳的拉力 思考题 5 1一宇航员体重为700N 在太空中漫步时 他的体重与在地球上一样吗 5 2什么是惯性 是否任何物体都具有惯性 正在加速运动的物体 其惯性是仍然存在还是已经消失 5 3如图5 5所示 绳子通过两个定滑轮 在绳的两端分别挂着两个质量完全相同的物体 开始时处于静止状态 若给右边的物体一水平速度 则左边物体应该 5 4质点的运动方向是否一定与质点受合力的方向相同 某瞬时 质点的加速度大 是否说明该质点所受的作用力也一定大 5 5质量相同的两物体A和B 其初速度相同均为v0 现在两物体上分别作用力FA和FB 若FA FB 经过相同的时间间隔后 则有 ABCD不能确定 5 6质量为m的质点在力F作用下沿曲线运动 如图5 6所示 根据动力学基本方程的描述 选出质点运动与所受力的关系不可能出现的应是 5 7若知道一质点的质量和所受到的力 能否知道它的运动规律 习题 5 1质点M的质量为m 运动方程为 其中b d 为常量 求作用在此质点上的力 5 2如图5 7所示 在均匀静止的液体中 质量为m的物体M从液面处无初速度下沉 如图所示 假设液体阻力 其中为阻尼系数 试分析该物体的运动规律 5 3如图5 8所示 起重机上吊车吊着质量的物体 沿轨道以角度度做匀速运动 因故紧急制动后 重物由于惯性绕悬点O向前摆动 已知绳长l 3m 若不计绳的质量 求制动后绳子的最大拉力 5 4如图5 9所示的机构中 偏心轮绕轴O以匀角速度w转动 推动挺杆AB沿铅垂滑道运动 挺杆顶部放有质量为m的物快D 设偏心轮偏心距OC e 轮心C在运动开始时位于铅垂线ABO上 试求在任意瞬时物块D对挺杆的压力和保证物块D不离开挺杆的偏心轮的转动角速度的最大值 5 5如图5 10所示 料车的料斗连同所载物料的质量 车架与车轮的质量 如料斗弹簧按的规律作铅垂运动 试求料车对水平直线轨道的最大压力与最小压力 5 6如图5 11所示 质量的小球 放在倾角的光滑面上 并用平行于斜面的绳将小球固定在图示位置 如斜面以的加速度向左运动 求绳的拉力及小球对斜面的压力 欲使绳的张力为零 加速度a应为多大 5 7如图5 12所示 质量为m的球A 用两根长为l的杆支撑 支撑架以匀角速度绕铅直轴BC转动 已知BC 2a 杆AB及AC的两端均为铰接 杆重忽略不计 求杆AB AC所受的力 5 8如图5 13所示 半径为R 内壁光滑的环形管 在水平面内以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论