




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
完全随机分组设计的资料一、 两组或多组计量资料的比较1.两组资料:1)大样本资料或服从正态分布的小样本资料(1)若方差齐性,则作成组t检验(2)若方差不齐,则作t检验或用成组的Wilcoxon秩和检验2)小样本偏态分布资料,则用成组的Wilcoxon秩和检验2.多组资料:1)若大样本资料或服从正态分布,并且方差齐性,则作完全随机的方差分析。如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。2)如果小样本的偏态分布资料或方差不齐,则作Kruskal Wallis的统计检验。如果Kruskal Wallis的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用成组的Wilcoxon秩和检验,但用Bonferroni方法校正P值等)进行两两比较。二、 分类资料的统计分析1.单样本资料与总体比较1)二分类资料:(1)小样本时:用二项分布进行确切概率法检验;(2)大样本时:用U检验。2)多分类资料:用Pearson c2检验(又称拟合优度检验)。2. 四格表资料1)n40并且所以理论数大于5,则用Pearson c22)n40并且所以理论数大于1并且至少存在一个理论数5,则用校正 c2或用Fishers 确切概率法检验3)n40或存在理论数40并且理论数小于5的格子数行列表中格子总数的25%,则用Fishers 确切概率法检验4. RC表资料的统计分析1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则CMH c2或Kruskal Wallis的秩和检验2)列变量为效应指标,并且为无序多分类变量,行变量为有序多分类变量,作none zero correlation analysis的CMH c23)列变量和行变量均为有序多分类变量,可以作Spearman相关分析4)列变量和行变量均为无序多分类变量,(1)n40并且理论数小于5的格子数行列表中格子总数的25%,则用Fishers 确切概率法检验三、 Poisson分布资料1.单样本资料与总体比较:1)观察值较小时:用确切概率法进行检验。2)观察值较大时:用正态近似的U检验。2.两个样本比较:用正态近似的U检验。配对设计或随机区组设计四、 两组或多组计量资料的比较1.两组资料:1)大样本资料或配对差值服从正态分布的小样本资料,作配对t检验2)小样本并且差值呈偏态分布资料,则用Wilcoxon的符号配对秩检验2.多组资料:1)若大样本资料或残差服从正态分布,并且方差齐性,则作随机区组的方差分析。如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。2)如果小样本时,差值呈偏态分布资料或方差不齐,则作Fredman的统计检验。如果Fredman的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用Wilcoxon的符号配对秩检验,但用Bonferroni方法校正P值等)进行两两比较。五、 分类资料的统计分析1.四格表资料1)b+c40,则用McNemar配对 c2检验或配对边际c2检验2)b+c40,则用二项分布确切概率法检验2.CC表资料:1)配对比较:用McNemar配对 c2检验或配对边际c2检验2)一致性问题(Agreement):用Kap检验变量之间的关联性分析六、 两个变量之间的关联性分析1.两个变量均为连续型变量1)小样本并且两个变量服从双正态分布,则用Pearson相关系数做统计分析2)大样本或两个变量不服从双正态分布,则用Spearman相关系数进行统计分析2.两个变量均为有序分类变量,可以用Spearman相关系数进行统计分析3.一个变量为有序分类变量,另一个变量为连续型变量,可以用Spearman相关系数进行统计分析七、 回归分析1.直线回归:如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,则直线回归(单个自变量的线性回归,称为简单回归),否则应作适当的变换,使其满足上述条件。2.多重线性回归:应变量(Y)为连续型变量(即计量资料),自变量(X1,X2,Xp)可以为连续型变量、有序分类变量或二分类变量。如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,可以作多重线性回归。1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用3.二分类的Logistic回归:应变量为二分类变量,自变量(X1,X2,Xp)可以为连续型变量、有序分类变量或二分类变量。1)非配对的情况:用非条件Logistic回归(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用2)配对的情况:用条件Logistic回归(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用4.有序多分类有序的Logistic回归:应变量为有序多分类变量,自变量(X1,X2,Xp)可以为连续型变量、有序分类变量或二分类变量。1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用5.无序多分类有序的Logistic回归:应变量为无序多分类变量,自变量(X1,X2,Xp)可以为连续型变量、有序分类变量或二分类变量。1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用八、 生存分析资:要求资料记录结局和结局发生的时间(如;死亡和死亡发生的时间)1.用Kaplan-Meier方法估计生存曲线2.大样本时,可以寿命表方法估计3.单因素可以用Logrank比较两条或多条生存曲线4.多个因素时,可以作多重的Cox回归1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用随着速度越来越快,计算机的功能越来越多,计算统计功能反而已经成为了计算机的一个次要部分。不过,对于我们这些从事社会学学习和研究的人来说,快速的计算和统计仍旧是我们使用计算机的主要功能,所以我们平日的工作总是离不开SPSS(Statistical Package for the Social Science社会科学统计软件)。SPSS虽然好用,但是学起来并不容易,特别是在目前高校的教育体制下,教材的过时以及课程设置的不合理,使得SPSS的学习成为了社会学、统计学以及其他社会科学学科学生极为头痛的一件事情。更为棘手的是:往往在学生还没有学会SPSS之前,一些调查研究任务却又强迫他们使用SPSS进行分析工作,使得他们十分 苦恼。本教程就是为那些已经学习过统计学,并且粗通计算机,但尚未学习过SPSS的社会科学学科的学生准备的,运用面向问题的教学方法,通过一个调查问卷的具体分析过程使学生们对SPSS有一个感性认识,并能够再没有完全掌握SPSS的前提下利用SPSS完成一些分析任务。因此,本文不强调面面俱到只强调读者能够完成调查分析的任务,所以会故意忽略一些十分重要但未必会用到的功能,还请读者见谅。如果读者确实需要使用这些功能,建议参考一本好一点的辅导书。相信大家知道:依次完整的利用计算机辅助的问卷调查包括问卷设计、问卷访问、数据输入、数据分析、数据输出、调查报告的撰写六大部分。SPSS软件参与的主要是数据输入、数据分析和数据输出这三个部分。接着,本文就将分成这三块,分别介绍SPSS的使用以及一些技巧、经验。数据输入在完成了问卷访问这个部分之后,我们手中便拥有了数百至上万份调查问卷,这些问卷计算机是无法直接识别处理的,我们必须将它们进行适当的编码。由于采用计算机分析,问卷在设计阶段就应该考虑到今后的编码问题,所以应该将问卷设计地以客观题为主,被访问者填写的应该只是注入数字、选项这些计算机能够处理的信息。我们首先要为问卷的每一个填写项都起一个代号,并决定它的数据属性(主要是区分为字符串、逻辑串还是数字)。笔者的习惯是首先用英文字母表示填写项的大题号,接着用阿拉伯数字表示填写项的小题号,然后再用英文字母表示填写项是本小题的第几项,最后再加上表示数据属性的后缀,比如说第二大题第三小题的第四个字符串填写项的代号便为B3D_S。在以后的所有分析过程中便利用这个代号来表示数据的具体内容。接下来,便是具体的输入过程了。首先,我们要对SPSS的数据文件有一个大致的了解,这对以后的学习十分关键。打开SPSS之后,我们便会看到一个类似EXCEL电子表格的东西,但如果你因此便把SPSS的数据文件理解为是类似于EXCEL的东西那么就错了,虽然SPSS数据的表现形式酷似EXCEL,但就实质而言它更接近于一个数据库文件,每一个数据列都有它的列名称(也就是我们刚刚起的代号)、列属性(也就是刚刚我们决定的数据属性),这些都类似于数据库中的字段名称、字段属性,如果读者以前学习过数据库的相关知识,那里理解起来就十分简单了。由于数据繁多,所以我们的输入过程往往不是由本人进行,而是请专业的数据录入人员代劳,而那些人员往往是不会使用SPSS的,所以我们在实际使用过程中数据往往不是在SPSS中输入的,而是在其它软件输入完毕之后利用SPSS导入的。在这里,导入用的文件格式是十分重要的。也许大家会习惯性的去选择使用EXCEL来录入数据,因为EXCEL与SPSS比较像。但是在笔者的实际使用过程中发现,最好的文件格式不是EXCEL的XLS文件,而是XBASE系列的DBF文件。之所以作这样的选择理由有两个:第一、DBF文件的字段名、字段属性这些在SPSS导入过程中都会被直接利用,可以略去了SPSS之后的列名称、列属性设定工作。第二、EXCEL的XLS文件的具体格式并没有向公众公开,所以在实际使用中XLS文件中的中文信息时常会发生丢失的现象。在利用XBASE输入完文件之后,我们只需要调用SPSS的菜单FILE下的OPEN功能,选择DBASE数据格式打开文件,然后再另存为SPSS的SAV格式便完成了数据输入过程。接下来我们便要进入最为重要的数据分析这个阶段了。数据分析对于外行人来说。SPSS最为难学的部分便是它Analyze菜单下十多项子菜单以及这之下四五十项孙菜单的统计功能,每一项统计功能的用法和功能对于外行人来说就像是天书一般。但是对于学习过统计学的读者来说,这应该不是问题。再加上SPSS在操作的简易性上还是十分优秀的,每一项统计功能一般只需要在窗口下选择统计用的变量,然后设置一下必要的选项,最后按下OK便可以了。所以在这里,具体的操作就不再介绍了。在这里,笔者觉得有必要先介绍一下SPSS的Viewer。在下面的数据分析和数据输出过程中,我们调用SPSS的数据分析和制图模块所得到的结果都会由SPSS自动输出到一个名为Viewer的程序中,并且可以以SPO为后缀名保存成为专门的文件。这样做的好处是如果你的分析和制图工作一次没有完成,那么利用保存的SPO文件,就不必下一次重新作过了。同时,将所有的分析和制图的结果都保存在一个SPO文件中,并随调查报告作为电子附件一起陈送给客户,一来有利于客户检验分析的可靠性,二来也适合于今后电子化、网络化的趋势。根据笔者的经验,SPSS的学习者在这一阶段最主要的问题在于以往学习的统计指标总是中文的,而SPSS中的统计指标是英文的,指标的中文和英文往往无法一一对应,因此,在这一部分中,笔者主要是附上一张统计指标的中英文对照表,如下:Summarize菜单项 数值分析过程 Frequencies子菜单项 单变量的频数分布统计 Descriptives子菜单项 单变量的描述统计 Explore子菜单项 指定变量的综合描述统计 Crosstabs子菜单项 双变量或多变量的各水平组合的频数分布统计 Compare Mean菜单项 均值比较分析过程 Means子菜单项 单变量的综合描述统计 Independent Sample T test子菜单项 独立样本的T检验 Paired Sample T test子菜单项 配对样本的T检验 One-Way ANOVA子菜单项 一维方差分析(单变量方差分析) ANOVA Models菜单项 多元方差分析过程 Simple Factorial子菜单项 因子设计的方差分析 General Factorial子菜单项 一般方差分析 Multivariate子菜单项 双因变量或多因变量的方差分析 Repeated Factorial子菜单项 因变量均值校验 Correlate菜单项 相关分析 Bivariate子菜单项 Pearson积矩相关矩阵和Kendall、Spearman非参数相关分析 Partial子菜单项 双变量相关分析 Distance子菜单项 相似性、非相似性分析 Regression菜单项 回归分析 Liner子菜单项 线性回归分析 Logistic子菜单项 二分变量回归分析(逻辑回归分析) Probit子菜单项 概率分析 Nonlinear子菜单项 非线性回归分析 Weight Estimation子菜单项 不同权数的线性回归分析 2-stage Least Squares子菜单项 二阶最小平方回归分析Loglinear菜单项 对数线性回归分析 General子菜单项 一般对数线性回归分析 Hierarchical子菜单项 多维交叉变量对数回归分析 Logit子菜单项 单因变量多自变量回归分析 Classify菜单项 聚类和判别分析 K-means Cluster子菜单项 指定分类数聚类分析 Hierarchical Cluster子菜单项 未知分类数聚类分析 Discriminent子菜单项 聚类判别函数分析 Data Reduction菜单项 降维、简化数据过程 Factor子菜单项 因子分析 Correspondence Analysis子菜单项 对应表(交叉表)分析 Homogeneity Analysis子菜单项 多重对应分析 Nonlinear Components子菜单项 非线性成分分析 OVERALS子菜单项 非线性典则相关分析 Scale菜单项 Reliability Ananlysis子菜单项 加性等级的项目分析 Multidimensional Scaling子菜单项 多维等级分析 Nonparametric Tests菜单项 Chi-Square子菜单项 相对比例假设检验 Binomial子菜单项 特定时间发生概率检验 Run子菜单项 随即序列检验 1-Sample Kolmogorov Smirnov子菜单项 样本分布检验 2-Independent Samples子菜单项 双不相关组分布分析 K Independent Samples子菜单项 多不相关组分布分析 2 Related Samples子菜单项 双相关变量分布分析 McNemar test子菜单项 相关样本比例变化分析 K Related Samples子菜单项 相关变量分布分析 Cocharns Q test子菜单项 二分变量均数检验 Kendalls W子菜单项 一致性判定 Time Series菜单项 Exponential Smoothing子菜单项 平衡序列的随机分量 Curve Estimation子菜单项 数据拟合 Autoregression子菜单项 一阶自回归误差线性方差检验 ARIMA子菜单项 综合自回归移动平均分析 XII ARIMA子菜单项 增倍和加性季节因子分析 Seasonal Decomposition子菜单项 对时间序列增倍和加性季节因子分析 Survival菜单项 Life Tables 生命表分析 Kaplan-Meier 双事件分布检验 Cox Regression 事件与时间变量相互分析 Cox w/Time Deep COV 时间函数Cox分析 有了这一张表,相信读者便可以很容易的利用进行各类分析了。实际上,数据分析这一阶段,就使用SPSS上没有什么难度,关键是在于究竟你能够怎样最好的利用SPSS提供的分析模块从数据中挖掘出更多的东西来,这可就要依靠你的不断摸索了。最后,还要介绍一个小技巧:如果读者所在学校今后学习的软件为版本的话,那么今后你就必须利用命令行来驾驭,所以你在利用的Windows版本进行数据分析的过程中,可以利用每一项统计功能窗口OK按钮下的Paster按钮将本统计功能的命令行复制到剪贴板,然后再仔细研究。数据输出经过数据分析,我们已经得到了很多有用的结果了。但是单单是这样是不够的,只有我们将结果撰写成调查报考,才能为人所接受。所以,就很有必要由SPSS输出必要的结果来。首先便是制图,数字很简洁很精确,但是不够直观,不利于读者更好更迅速的理解调查报考,所以我们应该将数据转化成直观的图形。SPSS的制图能力是极其强大的,能够输出的图形包括条形图、面积图、圆图、高-低-收盘图、极差图、距限图、排列图、帕累托图、工序控制图、误差条图、散点图、直方图、时间序列图、相关图等几十种。虽然SPSS能够绘制的图形很多,但并没有增加我们的学习难度。事实上,大多数图形绘制需要设置的东西是大同小异的,这里就以最简单的条形图为例进行介绍。点击菜单中的Graph,然后选择Bar,便会弹出一个窗口让你选择条形图的图式,由简单条形图、分组条形图、分段条形图,根据你的需要,选择一个。然后按下“Define”,接着我们选择需要制图的字段,在条形图中只能选择一个字段,其他的图形根据图形本身的特性会有所不同。选择完字段,我们需要设置坐标轴,是按照百分比还是数字或其他方式绘制坐标轴。最后可以利用“Title”按钮设置图形的标题,最后按下“OK”,在SPSS的Viewer中便会得到我们需要的图形了。按照以上介绍的方法,将所有需要的图形全部制作完毕,我们便要开始将图形和分析结果正式输出到调查报考中去了。一般来说,我们会使用诸如WORD、WPS2000这类字处理软件来撰写调查报告,由于WINDOWS的剪贴板帮忙,我们只需要简单的利用“复制”、“粘贴”便可以完成输出了。值的一提的是,SPSS在输出上为我们考虑的十分周到,可以选择以图片或RTF格式输出。如果你希望将分析结果和图形以图片格式输出,那么选择你需要输出的结果或图形,然后按下鼠标右键,在弹出的菜单中选择“Copy Objects”。如果你希望将分析结果和图形以RTF格式输出以便于在字处理软件中进行进一步的编辑,那么在刚才弹出的菜单中选择“Copy”便可以了。至于这两种方法孰优孰劣,就必须是具体情况而定了。以图片输出的方式虽然牺牲了进一步处理的便利性,但是由于SPSS软件本身便已经具有了一定的标准性,所以它输出的分析结果和图形自然具有一定的权威性;而以RTF格式输出的方式,我们可以将分析结果以及图形中的英文信息替换为中文,并进行必要的增删以增加可读性。如果调查报告的委托人并不熟悉英语或并不是社会学、统计学的专业人士,那么这样的操作就极其有必要了。好了,洋洋洒洒五千余字,终于将SPSS在社会调查中最最基本的使用方法介绍完了,看完本文,相信读者已经能够利用SPSS进行最最简单的调查分析了。但是千万别得意,千万不要忘了,SPSS终究只是一种工具,它只能够加快你在社会调查过程的的进程,如果要想写出一份优秀的调查报告来,还是要依靠你自身的不断努力哦!统计软件包SPSS给统计工作者提供了很大方便,SPSS for Windows版本推出后,使用者无需编写程序也可完成分析,使用更广泛了。然而,面对软件包提供的众多统计过程(或方法),有些使用者感到迷惘。针对这种情况,本文就如何正确使用SPSS for Windows软件包中Nonparametric Tests过程清单提供的8个非参数检验过程(或方法)逐一介绍。 一、Chi-SquareChi-Square是对单个样本作检验的推断方法,用于推断目前掌握的样本是否来自某特定分布总体,属拟合优度检验1。要求提供假定总体的理论频数;默认总体为均匀分布时无需提供理论频数2。Chi-Square过程通过分析实际频数与理论频数吻合的程序来完成检验,因此特别适合于频数资料的分析,也只接受和处理频数资料,如病人经治疗后治愈、好转、有效和无效的人数总的说来是否相同(实为治愈、好转、有效和无效的概率或机会是否相同),成绩优、良、中、差的学生人数总的说来是否相同,赞同某种观点的人数总的说来是否达到80%,等等。要求样本足够大,按观察值从小到大的顺序提供理论频数。理论频数通过主对话框中Expected Values的Values选项提供,All categories equal是默认项,即均匀分布。若只想推断样本中某一范围内的频数是否来自某种特定分布总体,可通过主对话框中Expected Range的Use speciffied range选项提供范围的上、下限。上述理论频数需根据假定总体分布计算或问题的实际背景确定。二、BinomialBinomial过程对二值变量的单个样本作检验,推断总体中两类个体的比例是否分别为和(1-),值通过Test Proportion选项提供,默认值是=0.52。可借助于主对话框中Define Dichotomy的Cut point选项提供截断点,将连续变量转化成二值变量作分析;若提供的变量已经是二值变量,则不需提供截断点。小样本时输出精确概率,大样本时输出正态近似法的结果。显然,在大样本时,也可用Chi-Square过程完成。三、RunsRuns过程借助样本序列的顺序推断总体序列的顺序是否是随机的,属随机性检验3,4。过程将变量转化成二值变量后再作检验,转化时所用截断点可以是Median、Mode、Mean或指定的数值,需通过Cut Point对话框指明截断点。结果中只输出正态近似法的P值,因此要求样本足够大,样本不大时应利用结果提供的信息查表作结论,不可直接用结果中的P值作结论。Runs检验的基本思想也用于分析两个独立样本数据,推断两个总体的分布是否相同4,称Wald-Wolfowitz runs检验,见后文。四、1-Sample K-S1-Sample K-S过程也是对单个样本作分析,推断样本是否来自正态分布总体、或均匀分布总体、或Poisson分布总体,也属拟合优度检验。此方法是前苏联学者于本世纪三十年代提出的,称为“Kolmogorov-smirnov”单一样本检验,又称Kolmogorov检验,K-S是Kolmogorov-Smirnov的缩写。此过程直接处理原始数据,一般认为其功效比Chi-Square检验高,且在样本不大时也可用3。结果中的Z是渐近统计量5,大样本时=0.05和=0.01的界值分别是1.36和1.63,小样本时应读取结果中经验分布函数与理论分布函数的最大差值查界值表作结论,不可直接利用结果中的P值作结论。此方法的基本思想还可用于推断两个独立样本是否来自相同的总体,详见下文。五、2 Independent Samples此过程用于推断两个独立样本是否来自相同的总体,有四种方法供选用,各方法间不全相同,现逐一介绍如下。1.Mann-Whitney U检验(又简称M-W检验),注重对分布的中心位置(平均水平)作检验,实际是检验H0:两样本所对应的总体具有相同的中心位置(中位数),属位置参数检验,而不管两总体分布的形状如何,因此通常假定两总体分布的形状相同3,只有在这个前提下的中心位置相同才能说是两总体分布相同或两样本来自相同总体;若不能明确两总体分布的形状是否相同,则不宜单独使用此方法作分析了事,应同时作K-S检验或W-W检验,并对全部结果作综合分析。因为此方法与目前国内通用教材中的Wilcoxon Rank Sum检验法完全等价,故在结果中一并给出1。小样本时应读取精确概率作结论6。2.Kolmogorov-Smirnov Z检验(又简称K-S检验)是上述提到的Kolmogorov检验用于两个独立样本的情形,对全貌作检验。如果结论是两总体分布不相同,此方法尚不足以说明是位置不同、变异程度不同还是偏度不同,这是报告结果时应注意的。结果中的Z也是渐近统计量,大样本时=0.05和=0.01的界值分别是1.36和1.63,小样本时应读取结果中两个经验分布函数的最大差值查界值表作结论,不可直接利用结果中的P值作结论。3.Wald-Wolfowitz runs检验(又简称W-W检验)与K-S检验相似,也是对全貌作检验,但其功效不如后者;此方法实为Runs过程用于分析两个独立样本的情形。与K-S检验类似,如果结论是两总体分布不相同,此方法尚不足以说明是位置不同、变异程度不同还是偏度不同,报告结果时也应注意。若两样本有相同观察值,结果中提供最大和最小游程个数以及相应的P值,当依此两P值所作的结论相矛盾时,须计算平均游程个数,然后查表作结论或用正态近似法作检验。此过程自动地根据样本大小给出确切概率或正态近似法的结果。4.Moses Test of Extreme Reactions检验注重于对分布范围(变异程度)作检验,实际是检验H0:两样本所对应的总体具有相同的分布范围1。要求样本足够大。笔者尚未见到在医学领域中使用此方法的例子。六、K Independent Samples此过程用于推断多个独立样本是否来自相同的总体,有两种方法供选用。1.Kroskal-Wallis H检验的是H0:多个样本对应的总体具有相同的中位数,属位置参数检验,是Mann-Whitney U检验的延伸。通常也假定两总体分布的形状相同。此方法就是目前国内通用教材中的多个样本比较的秩和检验(H检验)。2.Median检验的H0与Kroskal-Wallis H检验相同,但通常情况下其功效不如后者;然而,在相同值很多时效果较好,此时使用者应选用Median检验1。七、2 Related Samples此过程用于推断两个相关样本是否来自相同的总体,有三种方法供选用。1.Wilcoxon检验属对称性检验,检验差值总体的对称中心是否为0,从而推断两样本是否来自中心位置相同的总体。这就是目前国内通用教材中的配对设计资料的符号秩和检验,使用者大多熟悉,不多赘述。应该注意的是,小样本时不可直接读取结果中的P值作结论,而应利用结果中的秩和统计量查表作结论6。2.Sign检验也属对称性检验,相比于Wilcoxon检验,此方法不考虑“+”或“-”差值的相对大小关系(即秩次),只检验差值总体中“+”与“-”的个数是否相同,从而推断两样本是否来自中心位置相同的总体1,4。小样本时采用二项分布计算精确概率,大样本时采用正态近似法作检验。通常在数据测量较粗糙、不精确时使用。效率不如Wilcoxon检验。若变量是二值的,其检验效果与McNemar检验完全相同。3.McNemar检验实为目前国内通用教材中关于配对四格表资料有无差别的b、c格比较的检验,因此只接受和处理二值变量。小样本时采用二项分布计算精确概率,大样本时采用大家熟悉的2检验。此时作Sign检验也可得到相同结果。对于两个相关样本数据,目前国内通用教材中大多有介绍Spearman相关系数rs的计算方法及其假设检验,SPSS将此分析方法与Pearson相关系数r的分析、Kendall相关系数的分析归到一类,统一的Correlate过程中2,其中和rs的分析用在检验独立性时是渐近等价的,在大样本时可认为是等价的7。八、K Related Samples此过程用于分析多个相关样本数据,以推断它们是否来自分布相同的总体。有三种方法供选用,现分别叙述如下。1.Friedman检验就是目前国内通用教材中关于随机区组设计资料的秩和检验。使用者大多熟悉,不加赘述。2.Kendalls W检验,是和谐性分析,W统计量称和谐性系数或一致性系数(coefficient of concordance),用于度量一致性好坏。对同一份数据作分析,Kendalls W检验拒绝H0与否和Friedman检验完全相同,但它们所检验的H0不相同7。如:N名教师同时对K名学生的作文评分,对这份样本数据同时作Friedman检验和Kendalls W检验,两个检验的无效假设分别是“H0:这K名学生的作文水平相同”和“H0:教师不都认为某位学生作文水平比别的学生高或低(即教师的评分有高有低,不和谐、没有一致性)”。可见,Kendall W检验和Friedman检验既有联系又有区别,应根据要解决的问题正确使用,不应随意使用。3.Cochrans Q检验是McNemar法的推广,也只适用于二分变量数据。如:一批标本同时接种到4种培养基,根据病菌生长情况(有无生长,是二值变量)评价这4种培养基培养的效果是否相同,此时需用Cochrans Q方法作分析8。要求样本足够大,其中Q统计量服从自由度为v=k-1的2分布,k是处理组数(如上述例子中的培养基种类数4)。方法一(使用LISREL创建数据系统文件)1.在SPSS中创建 .sav 文件(1)使用compute, recode 命令对数据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙教版2024-2025学年七下数学期末模拟练习卷-学生用卷
- 陕西省西安市远东第二中学2024-2025学年八年级下学期5月月考道德与法治试卷(无答案)
- 工业废弃物处理与污染防治
- 工业旅游视角下的现代厂区建设
- 工业机器人系统设计与应用研究
- 工业机器人与数控技术的融合
- 工业机器人技术及其电机控制策略
- 工业污染监测与控制技术
- 工业污染防治的新技术动态
- 工业污染防治措施与标准
- 为什么天空是蓝色的
- 妇科急症的处理与应急预案
- 钢筋挂篮计算书
- 集团分权管理手册
- 信息系统运维服务项目归档资料清单
- 辽宁省义务教育课程各科目安排及占九年总课时比例、各科目安排样表(供参考使用)
- 慢性呼吸疾病肺康复护理专家共识课件
- 乌兰杰的蒙古族音乐史研究-评乌兰杰的《蒙古族音乐史》
- 年产8万吨煅烧铝矾土熟料生产线项目环评影响报告
- 变电工程施工合同协议书
- 电工技术-北京科技大学中国大学mooc课后章节答案期末考试题库2023年
评论
0/150
提交评论